

Località Montecaselli n°4 - Piombino (Li)

Lamiere grecate collaboranti per solai tipo EP55 ed EP75. Metodi di verifica SLU e SLS: NTC2018 – EC3 – EC4.

, KI			See A Second Committee of the Committee					B/W	
5								1	L LACOVAZZI
4							ØRI	Dou. Ing. G	iacomo IACOVAZZI GNERI PROV. LIVORNO
3							-	EZ.A	ng Civile - Edile - Ambientale Ing Industriale
2							N	. 1465	Ing Industrato
1									
0	Prima emis	ssione.							
REVISION					DESCRI	PTION			
5									
4									
3									
2									
1									
0	14/03/2020	Ing.	G. lacovazzi	Ing.	G. lacovazzi	Ing.	G. lacovazzi	Società.	Etrusca Profilati s.r.l.
REVISION	DATE	I	PREPARED		CHECKED	А	PPROVED		CLIENT

Sede legale ed Uffici: Via Largo della Fiera n°21, Venturina Terme – Campiglia Marittima (Li) – ITALIA. Tel.:+390565855314 - P. IVA: 01869910495.

Titolo elaborato.

Codice fornitore.

20-021-DR EP55-75 _00

Rev. 00

PAG. 2 di 31

INDICE

Titolo del documento

1.	NORMATIVA DI RIFERIMENTO.	3
2.	MATERIALI.	4
3.	SIMBOLOGIA.	6
4.	SIMBOLOGIA RICORRENTE.	7
5.	PREMESSA E SCOPO	8
6.	INTRODUZIONE E RICHIAMI ALLA NORMATIVA	9
7.	CRITERI DI CALCOLO	11
8.	METODI DI DIMENSIONAMENTO PRELIMINARE	13
9.	CALCOLO COMPLETO SOLAIO COLLABORANTE IN LAMIERA GRECATA.	22
10.	REGOLE PRATICHE DI PROGETTAZIONE E REALIZZAZIONE	30
11.	CONCLUSIONI	31

ARCA.LAB.	amministrazione@Bernardinielacovazzi.com tecnico@Bernardinielacovazzi.com www.Bernardinielacovazzi.com	Sede legale ed Uffici: Via La Venturina Terme – Campiglia Ma Tel.:+390565855314 - P. IVA: 018	rittima (Li) – ITALIA.
Titolo elaborato.	Codice fornitore.		_
Titolo del documento	20-021-DR EP55-75 _00	Rev. 00	PAG. 3 di 31

1. NORMATIVA DI RIFERIMENTO.

- EUROCODICE 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici.
- EUROCODICE 4 Progettazione delle strutture composte acciaio-calcestruzzo Parte 1-1: Regole generali e regole per gli edifici
- UNI EN 10346:2015: Prodotti piani di acciaio rivestiti per immersione a caldo in continuo per formatura a freddo Condizioni tecniche di fornitura
- UNI EN 10204:2005 (Certificato di controllo 3.1 ex 3.1B) "Prodotti metallici tipi di documenti di controllo".
- NTC 2018 DECRETO 17 gennaio 2018. Aggiornamento delle «Norme tecniche per le costruzioni».
- CIRCOLARE 21 gennaio 2019, n. 7 C.S.LL.PP. Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018.
- EN 1090-4: Esecuzione di strutture di acciaio e di alluminio Parte 4: Requisiti tecnici per elementi strutturali di acciaio formati a freddo e strutture formate a freddo per applicazioni su tetti, soffitti, pavimenti e pareti.

ARCA.LAB.	amministrazione@Bernardinielacovazzi.com tecnico@Bernardinielacovazzi.com www.Bernardinielacovazzi.com	Sede legale ed Uffici: Via Largo della Fiera Venturina Terme – Campiglia Marittima (Li) – ITA Tel.:+390565855314 - P. IVA: 01869910495.	
Titolo elaborato.	Codice fornitore.		_
Titolo del documento	20-021-DR EP55-75 _00	Rev. 00	PAG. 4 di 31

2. MATERIALI.

Materiale: UNI EN 10346	Tensione di rottura	Tensione di snervamento
S 280 GD	f _{tk} > 360MPa	f _{yk} > 280MPa
Allungamento % a rottura		>18
Modulo elastico alla temperatura di prog	getto di riferimento	E=210000MPa
Modulo elastico trasversale alla tempera	atura di progetto di riferimento	G=80769MPa
Coefficiente di dilatazione termico		$\alpha = 1.2 \cdot 10^{-6} \text{C}^{-1}$
Coefficiente di Poisson		v=0.3
Massa specifica dell'acciaio	$\rho_{ks} = 7850 \frac{kg}{m^3}$	
Materiale: Conglomerato cementizio	Classe di resistenza	Tensione di calcolo
C25/30	$f_{ck} = 25MPa$	$f_{cd} = 16.67 MPa$
Temperatura di progetto di riferiment	:0	20° C
Modulo elastico alla temperatura di p	progetto di riferimento	E=31447MPa
Coefficiente di Poisson		υ = 0.2
Massa specifica del cemento armato		$\rho_{kcls} = 2500 \frac{kg}{m^3}$
Materiale: Acciaio in barre nervate	Tensione di snervamento	Tensione di calcolo
B450C	$f_{yk} = 450$ Pa	$f_{yd} = 391Pa$
Temperatura di progetto di riferiment	20° C	
Modulo elastico alla temperatura di p	E = 210000MPa	
Coefficiente di Poisson	υ = 0.3	
Massa specifica dell'acciaio	$\rho_{ks} = 7850 \frac{kg}{m^3}$	

	Tipologia	Strutturale:				
	Valore di resistenza caratterist	ica a compre	essione su	cubi Rck:	30	N/mm ²
	Valore de	el coefficien	te di sicure:	zza - [γ _M]	1,5	-
atteristiche del calcestruzzo		TO CAN LOS OF	No.			
Tij	oo di resistenza del calcestruzzo Valore	Unità				100
Res	istenza caratteristica a compressione - [fck]:	24,90	N/mm ²			
Resiste	enza cilindrica media a compressione - [fcm]:	32,90	N/mm ²			
R	esistenza media a trazione semplice - [fctm]:	2,56	N/mm ²	I S W		
Resisten	za caratteristica a trazione, frattile 5% - [fctk]:	1,79	N/mm ²			
Resistenza	a caratteristica a trazione, frattile 95% - [fctk]:	3,33	N/mm ²		OF 6	
	Resistenza di calcolo a compressione - [fcd]:	14,11	N/mm ²	-	.85 · f _{ck}	
Resistenza di calcolo a	a compressione per spessori < 50 mm - [fcd]:	11,29	N/mm ²		$\gamma_{\rm c}$	
	Resistenza di calcolo a trazione (5%) - [fctd]:	1,19	N/mm ²		10	
Resistenza di calcolo	a trazione (5%) per spessori < 50 mm - [fctd]:	0,96	N/mm ²			
Modulo elastic	o istantaneo medio del calcestruzzo - [Ecm]:	31447,16	N/mm ²			
Valore del coefficiente di	sicurezza per addensamento di barre - [γM]:	1,00	-			
Tensione tangenziale di adere	nza caratteristica (5%) per Φ ≤ 32 mm - [fbk]:	4,03	N/mm ²			
Tensio	one tangenziale di aderenza di calcolo - [fbd]:	2,69	N/mm ²			
Coefficiente di Poisson pe	r il calcestruzzo in stadio non fessurato - [v]:	0,20	-			
Coefficiente di Poisso	n per il calcestruzzo in stadio fessurato - [v]:	0,00				
	Coefficiente di dilatazione termica - [α]:	1,00E-05	1/°C			
	Tensione caratteristica o	li snervamei	nto dell'acc	iaio - [fvk]	: 450	N/mm ²
atteristiche dell'accialo			Name of		7	
	Tipo di resistenza dell'acciaio Valore	Unità	Haster			
Resi	stenza di calcolo dell'acciaio - [fyd]: 391,30	N/mm²				

ARCA.LAB.	amministrazione@Bernardinielacovazzi.com tecnico@Bernardinielacovazzi.com www.Bernardinielacovazzi.com	Sede legale ed Uffici: Via La Venturina Terme – Campiglia Ma Tel.:+390565855314 - P. IVA: 018	rittima (Li) – ITALIA.
Titolo elaborato.	Codice fornitore.		_
Titolo del documento	20-021-DR EP55-75 _00	Rev. 00	PAG. 6 di 31

3. SIMBOLOGIA.

Denomin	azione	Simb	ologia
dimensione, accelerazione	area, classe	а	Α
dimensione, trave	dimensione	b	В
dimensione, colonna, coefficiente,			
compressione	dimensione, carico, fattore	С	С
diametro	diametro	d	D
eccentricità	modulo di Young, energia cinetica	е	E
tensione, fattore, flangia di trave, flessione	forza	f	F
accelerazione di gravità	baricentro, massa, modulo tangente	g	G
altezza, fattore	reazione orizzontale	h	Н
interasse, quantità variabile, rapporto	momento d'inerzia, intermittenza	i	I
quantità variabile	momento d'inerzia di massa	j	J
coefficiente di sicurezza, costante	fattore, costante	k	K
dimensione	regime, fattore, combinazione di carichi	I	L
massa	massa, momento flettente, classe	m	M
numero di giri, variabile, numero di cicli	sforzo assiale	n	N
riferimento	centro geometrico	0	0
carico distribuito, pressione	potenza, carico	р	Р
carico distribuito, massa, pressione	portata, massa	q	Q
raggio, corda	reazione vincolare, resistenza	r	R
spazio	sollecitazione, tiro, carico	S	S
spessore, tempo, taglio	momento torcente, durata, torsione	t	T
riferimento	energia potenziale, numero di cicli	u	U
velocità	taglio, reazione verticale	V	V
anima di trave/colonna	modulo di resistenza	W	W
incognita, direzione	azione orizzontale secondo X, fattore	X	X
incognita, direzione	azione orizzontale secondo Y, fattore	У	Υ
incognita, direzione	azione verticale secondo Z, fattore	Z	Z
angolo, accelerazione angolare		α	
angolo, fattore		β	
fattore		χ	
angolo	scarto	δ	
allungamento relativo		${\cal E}$	Δ
angolo, fattore	fattore	ϕ	Φ
angolo		φ	
angolo, deformabilità		γ	
rendimento		η	
snellezza		λ	
coefficiente di attrito		μ	
angolo		θ	
angolo		g	
raggio di inerzia		ρ	
tensione normale		σ	
tensione tangenziale		au	
velocità angolare	angolo	ω	Ω

ARCA.LAB.	amministrazione@Bernardinielacovazzi.com tecnico@Bernardinielacovazzi.com www.Bernardinielacovazzi.com	Sede legale ed Uffici: Via Largo della Fiera n°21, Venturina Terme – Campiglia Marittima (Li) – ITALIA. Tel.:+390565855314 - P. IVA: 01869910495.		
Titolo elaborato.	Codice fornitore.	_		
Titolo del documento	20-021-DR EP55-75 _00	Rev. 00	PAG. 7 di 31	

4. SIMBOLOGIA RICORRENTE.

I simboli elencati sotto possono essere utilizzati all'interno del seguente documento con il seguente significato:

 M_{du} : momento di progetto (d) / ultimo (u)

 V_{du} : taglio di progetto (d) / ultimo (u)

N_{du} : sforzo assiale di progetto (d) / ultimo (u)

 T_{du} : torsione di progetto (d) / ultimo (u)

 $M_{de}; V_{de}; N_{de}; T_{de} \qquad : \qquad \text{ sollecitazioni in esercizio relative alle combinazioni di carico}$

33 : asse forte

22 : asse debole

apici b : bulloni s : sezioni

c : piastre di rinforzi e coprigiunti

asse z \equiv 33 asse y \equiv 22

asse x \equiv 11 asse trave

METODO DI CALCOLO.

- SLS per le verifiche in condizioni di esercizio.
- SLU per il calcolo in condizioni ultime.

ARCA.LAB.	amministrazione@Bernardinielacovazzi.com tecnico@Bernardinielacovazzi.com www.Bernardinielacovazzi.com	Sede legale ed Uffici: Via Largo della Fiera n°21, Venturina Terme – Campiglia Marittima (Li) – ITALIA. Tel.:+390565855314 - P. IVA: 01869910495.		
Titolo elaborato.	Codice fornitore.			
Titolo del documento	20-021-DR EP55-75 _00	Rev. 00	PAG. 8 di 31	

5. PREMESSA E SCOPO

La presenta relazione richiama la metodologia di calcolo applicabile ai profili prodotti dalla committente del tipo collaborante EP55 ed EP75.

Le considerazioni riportate su questa relazione sono anche estendibili nel metodo a tutti i profili di tipo collaborante che rispettano le condizioni geometriche e qualitative dei materiali, in accordo ai paragrafi 4.3.4 NTC2018 (Travi con soletta collaborante) e C4.2.4.1.3.4.2 (Stabilità dei pannelli soggetti a compressione) della circolare applicativa n°7.

I solai composti acciaio - calcestruzzo sono costituiti da una lamiera grecata di acciaio su cui viene eseguito un getto di calcestruzzo normale o alleggerito.

Durante la fase di getto, la funzione della lamiera è quella di cassero e costituisce tutta o parte dell'armatura longitudinale collaborante in zona tesa.

Poiché non è sufficiente l'adesione chimica tra lamiera e calcestruzzo, sono previste bugne superficiali per garantire l'aderenza fra acciaio e calcestruzzo.

ARCA.LAB.	amministrazione@Bernardinielacovazzi.com tecnico@Bernardinielacovazzi.com www.Bernardinielacovazzi.com	Sede legale ed Uffici: Via Largo della Fiera n°21, Venturina Terme – Campiglia Marittima (Li) – ITALIA. Tel.:+390565855314 - P. IVA: 01869910495.		
Titolo elaborato.	Codice fornitore.			
Titolo del documento	20-021-DR EP55-75 _00	Rev. 00	PAG. 9 di 31	

6. Introduzione e richiami alla normativa.

La verifica della lamiera grecata deve essere svolta in accordo con le indicazioni della normativa UNI EN1993-1-3 in materia di profilati sottili di acciaio formati a freddo.

Gli effetti delle dentellature o delle bugnature devono essere opportunamente considerati nella valutazione della resistenza (paragrafo 4.3.6.4.1 NTC2018).

In accordo al paragrafo 4.3.6.5.1 NTC2018 lo spessore minimo delle lamiere grecate impiegate nelle solette composte non deve essere inferiore a 0,8 mm.

Lo spessore della lamiera potrà essere ridotto a 0,7 mm quando in fase costruttiva vengano studiati idonei provvedimenti atti a consentire il transito in sicurezza di mezzi d'opera e personale. In accordo al paragrafo 4.3.6.5.3 NTC2018 la dimensione nominale dell'inerte dipende dalla più piccola dimensione dell'elemento strutturale nel quale il calcestruzzo è gettato.

Come previsto dal paragrafo 4.3.6.5.4 NTC2018 le solette composte sostenute da elementi di acciaio o calcestruzzo devono avere una larghezza di appoggio minima di 75 mm, con una dimensione di appoggio del bordo della lamiera grecata di almeno 50 mm.

Nel caso di solette composte sostenute da elementi in diverso materiale, tali valori devono essere portati rispettivamente a 100mm e 70 mm.

Nel caso di lamiere sovrapposte o continue che poggiano su elementi di acciaio o calcestruzzo, l'appoggio minimo deve essere 75mm e per elementi in altro materiale 100 mm.

In accordo al paragrafo 4.3.6.3.1 NTC2018 e 9.8.1 EC4 l'armatura minima deve essere:

- 0.2% A φ5/150x150 costruzioni non puntellate in fase di getto;
- 0.4% A φ6/150x150 costruzioni puntellate in fase di getto H=100mm;
- 0.4% A φ6/100x100 costruzioni puntellate in fase di getto H=110mm-120mm.

L'altezza complessiva h del solaio composto non deve essere minore di 80 mm.

Lo spessore del calcestruzzo h_c al di sopra dell'estradosso delle nervature della lamiera non deve essere minore di 40 mm.

ARCA.LAB.	amministrazione@Bernardinielacovazzi.com tecnico@Bernardinielacovazzi.com www.Bernardinielacovazzi.com	Sede legale ed Uffici: Via La Venturina Terme – Campiglia Ma Tel.:+390565855314 - P. IVA: 018	rittima (Li) – ITALIA.
Titolo elaborato.	Codice fornitore.		
Titolo del documento	20-021-DR EP55-75 _00	Rev. 00	PAG. 10 di 31

Se la soletta realizza con la trave una membratura composta, oppure è utilizzata come diaframma orizzontale, l'altezza complessiva non deve essere minore di 90 mm ed h_c non deve essere minore di 50 mm.

La resistenza a flessione delle sezioni trasversali di una soletta composta realizzata con una soletta armata di calcestruzzo gettata su una lamiera grecata collaborante può essere determinata con la teoria plastica, in accordo a quanto esposto al paragrafo 4.3.4.2.1.2 delle NTC ed al paragrafo C4.3.4.2, se sono soddisfatte le seguenti condizioni:

- sussiste la piena interazione tra lamiera e calcestruzzo;
- la sezione efficace della lamiera e valutata al netto di bugnature o dentelli;
- la lamiera nelle zone soggette a momento negativo e considerata attiva solo se continua sul profilo di acciaio;
- la stabilita delle parti compresse della lamiera e assicurata.

In tal caso si assume per il calcestruzzo un modello stress-block con tensione massima $0.85f_{ck}/\gamma_c$ mentre le tensioni normali nella lamiera e nelle barre d'armatura sono assunte pari al limite plastico.

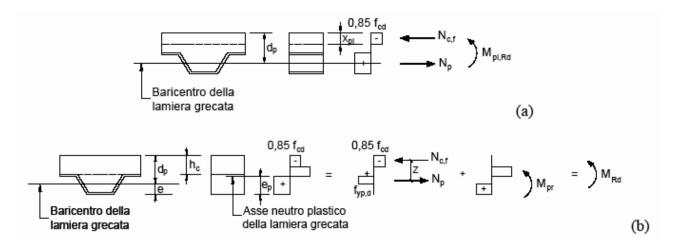


Figura 1: Stress-block rettangolare nel calcolo delle solette collaboranti acciaio – calcestruzzo.

ARCA.LAB.	amministrazione@Bernardinielacovazzi.com tecnico@Bernardinielacovazzi.com www.Bernardinielacovazzi.com	Sede legale ed Uffici: Via Largo della Fiera n°21, Venturina Terme – Campiglia Marittima (Li) – ITALIA. Tel.:+390565855314 - P. IVA: 01869910495.		
Titolo elaborato.	lo elaborato. Codice fornitore.		_	
Titolo del documento	20-021-DR EP55-75 _00	Rev. 00	PAG. 11 di 31	

7. Criteri di calcolo.

Fase I: La lamiera è utilizzata come cassero.

- 1) La verifica della sola lamiera grecata, per la definizione dello stato limite ultimo (SLU), è condotta in accordo all'EUROCODICE 3 e 4.
- 2) La verifica della lamiera, per lo stato limite di servizio (paragrafo 4.3.6.4.2 NTC2018), richiede di controllare che l'inflessione massima, sotto il peso proprio, il peso dei mezzi e personale in opera ed il peso del calcestruzzo fresco, non sia maggiore di L/180 (L: luce del solaio) comunque non superiore a 20mm.

Fase II: Soletta composta acciaio - calcestruzzo.

La verifica della lamiera grecata allo stato limite ultimo si svolge verificando i seguenti meccanismi di rottura:

- 1) Rottura per flessione $M_{p,Rd}$ nella sezione critica I (piano di mezzeria della soletta)
- 2) Rottura per raggiunto limite della forza di scorrimento $V_{l,Rd}$ nella sezione critica II (piano di rottura passante per l'asse delle bugne).
 - La resistenza nei confronti dello scorrimento (Appendice B.3.6 dell'EUROCODICE 4) viene determinata mediante il metodo del collegamento parziale dove $\tau_{u,Rd}$ è il valore dell'aderenza desumibile da prove di tipo sperimentale e fornibile solo dal produttore.

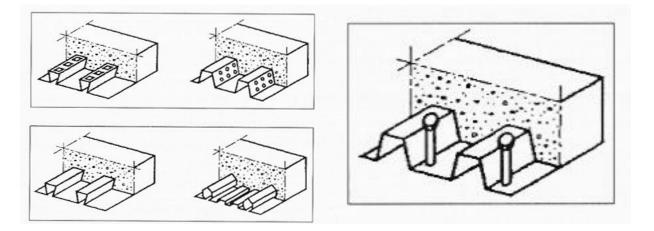


Figura 2: Greche, geometrie di bugnature e connettori.

ARCA.LAB.	amministrazione@Bernardinielacovazzi.com tecnico@Bernardinielacovazzi.com www.Bernardinielacovazzi.com	Sede legale ed Uffici: Via La Venturina Terme – Campiglia Ma Tel.:+390565855314 - P. IVA: 018	rittima (Li) – ITALIA.
Titolo elaborato.	Codice fornitore.	_	
Titolo del documento	20-021-DR EP55-75 _00	Rev. 00	PAG. 12 di 31

3) Rottura per taglio V_{v,Rd} nella sezione critica III (piano di appoggio della soletta).

La verifica per lo stato limite di servizio (SLS) si svolge controllando l'inflessione massima che non deve risultare superiore a:

- a) L/300 per il solo carico di servizio (indicato come carico utile nelle tabelle);
- b) L/250 per il peso proprio, permanente portato e carico di servizio.

Note:

- Luci su semplice appoggio superiori a 5m sono sconsigliabili essendo poco convenienti, inserire rompi-tratta (trave secondaria calcolata come appoggio elastico) quando possibile ed eseguire sempre il calcolo della frequenza di vibrazione propria (Fase II) ed inoltre, per luci superiori a 4m, porre particolare attenzione al calcolo della freccia elastica allo scopo di soddisfare il requisito della verifica allo SLS;
- Per luci maggiori di 3m e fino a 4m inserire almeno un puntello rompi-tratta in fase di getto;
- Per luci maggiori di 4m e fino a 5m inserire minimo due puntelli rompi-tratta in fase di getto.

ARCA.LAB.	amministrazione@Bernardinielacovazzi.com tecnico@Bernardinielacovazzi.com www.Bernardinielacovazzi.com	Sede legale ed Uffici: Via Largo della Fiera n°21, Venturina Terme – Campiglia Marittima (Li) – ITALIA. Tel.:+390565855314 - P. IVA: 01869910495.		
Titolo elaborato.	Codice fornitore.			
Titolo del documento	20-021-DR EP55-75 _00	Rev. 00	PAG. 13 di 31	

8. Metodi di dimensionamento preliminare.

Con riferimento alla normativa di seguito richiamiamo la metodologia di dimensionamento preliminare per il profilo EP55 per fase I e fase II.

Lo stessa metodologia è applicabile al profilo EP75 e più in generale a qualsiasi geometria che abbia i requisiti previsti dalla normativa di riferimento.

Dati di base sono:

Carico di servizio (utile): Secondo le combinazioni ed i coefficienti delle tabelle 2.6.1 (Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU) e 2.5.1 (valori dei coefficienti di combinazione) della normativa sono il carico di esercizio Q nel caso di un solaio per uso civile o industriale oppure il carico di esercizio Q, l'azione della neve N e del vento V nel caso di una copertura.

Le verifiche devono essere condotte sempre anche per le azioni sismiche E.

 G_1 : masse strutturali G_2 : masse non strutturali (*)

Q : carico di esercizio N: azione della neve

V: azione del vento E: azione sismica

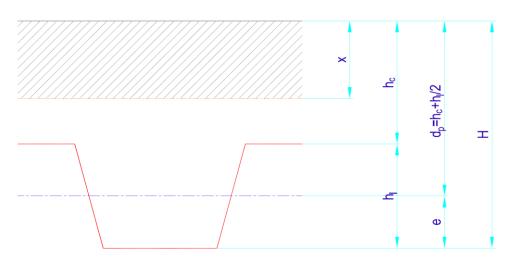
(*) Se le masse strutturali sono compiutamente definite: $\gamma_{G2} = 1.3$

Per il dimensionamento preliminare di un solaio possiamo indicare le seguenti combinazioni:

 $1.3 \cdot G_1 + 1.3 \cdot G_2 + 1.5 \cdot Q$ Combinazione fondamentale SLU (2.5.1).

 $G_1 + G_2 + Q$ Combinazione rara usata per SLE irreversibili (2.5.2).

In fase di dimensionamento preliminare è opportuno eseguire la verifica SLE più cautelativa.


Profilo tipo EP55 spessore s=0.8mm.

- Acciaio S280GD $f_{yk} = 280 MPa \rightarrow f_{yd} = \frac{f_{yk}}{\gamma_{M0}} = \frac{f_{yk}}{\gamma_{M1}} = 266.67 MPa$

- Calcestruzzo C25/30

Si definisce la geometria della greca a passo costante in accordo al profilo costruttivo e si elabora una geometrica equivalente di sezione rettangolare tenendo conto dell'inclinazione della sagoma.

ARCA.LAB.	amministrazione@Bernardinielacovazzi.com tecnico@Bernardinielacovazzi.com www.Bernardinielacovazzi.com	om Venturina Terme – Campiglia Marit		
Titolo elaborato.	Codice fornitore.			
Titolo del documento	20-021-DR EP55-75 _00	Rev. 00	PAG. 14 di 31	

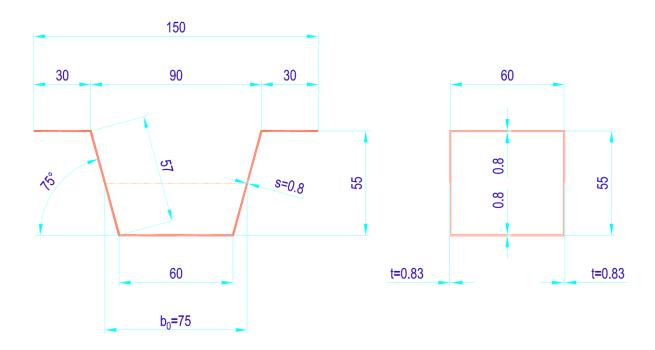


Figura 3: Sezione della greca EP55 a sinistra e profilo assimilato a destra.

Spessore equivalente: $t = \frac{s}{\sin 75^{\circ}} = 0.83 mm$

Area della lamiera : $A_l = 2 \cdot (60 \cdot 0.8 + 55 \cdot 0.83) = 187.3 mm^2$

 $\mbox{Momento di inerzia} \quad : \qquad \qquad I_l = 2 \cdot \left[60 \cdot 0.8 \cdot \left(\frac{55}{2} \right)^2 + \frac{0.83 \cdot 55^3}{12} \right] = 95615.2 mm^4$

Modulo di resistenza : $W_l = \frac{I_l}{\frac{55}{2}} = 3476.9 mm^3$

Sede legale ed Uffici: Via Largo della Fiera n°21, Venturina Terme – Campiglia Marittima (Li) – ITALIA. Tel.:+390565855314 - P. IVA: 01869910495.

Titolo elaborato.

Codice fornitore.

Titolo del documento

20-021-DR EP55-75 00

Rev. 00

PAG. 15 di 31

Le caratteristiche geometriche riferite ad un metro di lamiera sono:

$$A_a = A_1 \cdot \frac{1000}{150} = 1248.7 \text{mm}^2/\text{m}$$

$$I_a = I_1 \cdot \frac{1000}{150} = 637434.7 \text{mm}^4/\text{m}$$

$$W_a = W_l \cdot \frac{1000}{150} = 23179.3 \text{mm}^3/\text{m}$$

Verifica a flessione della lamiera:

 $M_{S,d,u}$

Fase I.

Per le piattabande del profilo assimilato della lamiera grecata, in accordo alle tabelle "C4.2.VIII -

larghezza efficace di pannelli compressi con entrambi i bordi longitudinali irrigiditi" e "C.4.2.IX -

larghezza efficace di pannelli compressi con un solo bordo longitudinale irrigidito", si ha per la

flangia compressa:

La sezione è in classe 4.

$$\psi = \frac{\sigma_2}{\sigma_1} = 1$$

La sezione è compressa in modo uniforme.

$$\bar{b} = 60$$
mm; $t = 0.8$ mm; $k_{\sigma} = 4$

Tabella C4.2.VIII.

$$\sigma_{cr} = k_{\sigma} \cdot \frac{\pi^2 \cdot E \cdot t^2}{12 \cdot (1 - v^2) \cdot \overline{b}^2} = \frac{189800}{\left(\frac{60}{22}\right)^2} MPa = 135 MPa$$

Carico critico euleriano.

$$\lambda_p = \sqrt{\frac{f_y}{\sigma_{cr}}} = \sqrt{\frac{280}{135}} = 1.44 > 0.673$$

Snellezza relativa del pannello.

$$\rho = \frac{\lambda_p - 0.055 \cdot (3 + \psi)}{\lambda_p^2} = \frac{\lambda_p - 0.22}{\lambda_p^2} = 0.59$$

$$b_{eff} = \rho \cdot \overline{b} = 0.59 \cdot 60 mm = 35 mm$$

Larghezza efficace del pannello.

Per le anime abbiamo:

$$t_w=0.8mm;~l_w=57mm;~\psi=\frac{\sigma_2}{\sigma_1}=-1;~k_\sigma=23.9~$$
 Tabella C4.2.VIII.

$$\sigma_{cr} = k_{\sigma} \cdot \frac{\pi^2 \cdot E \cdot t_w^2}{12 \cdot (1 - v^2) \cdot l_w^2} = 23.9 \cdot \frac{189800}{\left(\frac{57}{0.8}\right)^2} MPa = 894MPa$$

$$\lambda_p = \sqrt{\frac{f_y}{\sigma_{cr}}} = \sqrt{\frac{280}{894}} = 0.56 < 0.673 \rightarrow \rho = 1$$

Snellezza relativa del pannello.

$$l_{eff} = \rho \cdot l_w = 1 \cdot 57mm = 57mm > 55mm$$

Altezza efficace del pannello.

ARCA.LAB.	amministrazione@Bernardinielacovazzi.com tecnico@Bernardinielacovazzi.com www.Bernardinielacovazzi.com	Sede legale ed Uffici: Via Largo della Fiera n°21, Venturina Terme – Campiglia Marittima (Li) – ITALIA. Tel.:+390565855314 - P. IVA: 01869910495.		
Titolo elaborato.	Codice fornitore.	_		
Titolo del documento	20-021-DR EP55-75 _00	Rev. 00	PAG. 16 di 31	

 $\textbf{Tabella C4.2.VIII-Larghezza efficace di pannelli compressi con entrambi i bordi longitudinali irrigiditi$

Di	stribuzione delle tensioni		Larghezza effic	cace del pa	annello
$\sigma_{1} \qquad \qquad \psi = \frac{\sigma_{2}}{\sigma_{1}} = 1$ $ b_{eff} = \rho \cdot \overline{b} $ $ b_{eff} = 0.5 \cdot b_{eff} $					5⋅b _{eff}
σ ₁	σ ₂		$1 > \psi = \frac{\sigma_2}{\sigma_1} \ge 0$ $b_{eff} = \rho \cdot \overline{b}$ $b_{e1} = \frac{2}{5 - \psi} \cdot b_{eff}$	$b_{e2} = b$	$b_{\rm eff} - b_{\rm el}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\psi = \frac{\sigma_2}{\sigma_1} < 0$ $b_{eff} = \rho \cdot \frac{\overline{b}}{1 - \psi}$ $b_{e1} = 0, 4 \cdot b_{eff}$,6⋅b _{eff}
$\psi = \sigma_2 / \sigma_1 \qquad 1,00$	1>ψ>0	0	$0 > \psi > -1$	-1	$-1 > \psi > -3$
fattore k _σ 4,00	$8,2/(1,05+\psi)$	7,81	$7,81-6,29\psi+9,78\psi^2$	23,9	$5,98(1-\psi)^2$

Tabella C4.2.IX - Larghezza efficace di pannelli compressi con un solo bordo longitudinale irrigidito

Distr	Distribuzione delle tensioni Larghezza efficace del pannello					
σ_1 σ_2			$1 > \psi = \frac{\sigma_2}{\sigma_1} \ge 0$ $b_{\text{eff}} = \rho \cdot c$			
σ_1 σ_2 σ_2		$\psi = \frac{\sigma_2}{\sigma_1} < 0$ $b_{eff} = \rho \cdot b_c = \rho \cdot \frac{c}{1 - \psi}$				
$\psi = \sigma_2 / \sigma_1$	1,00	$1 > \psi > 0$	$0 0 > \psi > -1$ -1			
fattore k_{σ}	0,43	$0,578/(0,34+\psi)$	1,70	$1,7-5\psi+17,1\psi^2$	23,8	
Distr	ribuzione de	lle tensioni	Larghezza efficace del pannello			
σ ₁	С	σ ₂	$1 > \psi = \frac{\sigma_2}{\sigma_1} \ge 0$ $b_{eff} = \rho \cdot c$			
σ_1 σ_2 σ_2				$\psi = \frac{\sigma_2}{\sigma_1} < 0$ $b_{eff} = \rho \cdot b_c = \rho \cdot \frac{c}{1 - \psi}$		
$\psi = \sigma_2 / \sigma_1$			1≥ ψ	≥-3		
fattore k_{σ}			0,57-0,21	$\psi + 0.07\psi^2$		

ARCA.LAB.	amministrazione@Bernardinielacovazzi.com tecnico@Bernardinielacovazzi.com www.Bernardinielacovazzi.com	Sede legale ed Uffici: Via Largo della Fiera n°21, Venturina Terme – Campiglia Marittima (Li) – ITALIA. Tel.:+390565855314 - P. IVA: 01869910495.		
Titolo elaborato.	Codice fornitore.			
Titolo del documento	20-021-DR EP55-75 _00	Rev. 00	PAG. 17 di 31	

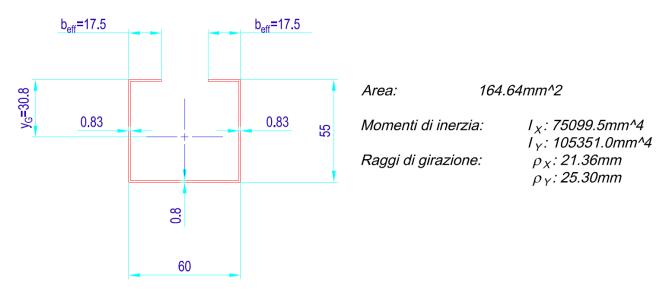


Figura 4: Sezione efficace della greca EP55 del profilo assimilato.

$$W_{l,eff,inf} = \frac{I_{l,eff}}{h-y_G} = \frac{75099.5}{55-30.8} \text{mm}^3 = 3103.3 \text{mm}^3 \qquad \qquad \text{Modulo di resistenza al bordo inferiore}.$$

$$W_{l,eff,sup} = \frac{I_{l,eff}}{y_G} = \frac{75099.5}{30.8} \text{mm}^3 = 2438.3 \text{mm}^3 \qquad \qquad \text{Modulo di resistenza al bordo superiore}.$$

Riferito al metro di lunghezza della lamiera:

$$W_{l,eff} = W_{l,eff,sup} \cdot \frac{1000}{150} = 16255 \text{mm}^3/\text{m}$$

$$M_{R,d,u} = W_{l,eff} \cdot f_{yd} = 16255 \frac{mm^3}{m} \cdot 266.67 MPa = \frac{4.335 kNm}{m} > M_{S,d,u}$$

<u>Verifica a taglio della lamiera</u>: V_{S,d,u} Fase I

Per il profilo EP55, in un metro di lamiera ci sono 13.33 anime.

$$A_w = 13.33 \cdot 55 \cdot 0.8 \text{mm}^2 = 586.67 \text{mm}^2$$

$$V_{pl,R,d} = \frac{A_w \cdot \left(\frac{f_y}{\sqrt{3}}\right)}{\gamma_{M0}} = \frac{586.67 \cdot \frac{280}{\sqrt{3}}}{1.05} kN = 90.324 kN > V_{S,d,u}$$

Si deve anche verificare la resistenza all'instabilità per taglio in accordo al paragrafo C4.2.4.1.3.4.1., trascurabile in fase di dimensionamento preliminare e solitamente largamente soddisfatta, pertanto si rimanda alla verifica completa del solaio mediante software come mostrata nel successivo paragrafo 9.

Verifica allo SLU per flessione della soletta:

Fase II.

Con riferimento alla figura 1 si può scrivere:

$$N_{c.f} = 0.85 \cdot f_{cd} \cdot b \cdot x_{pl}$$

Resistenza di calcolo del calcestruzzo compresso.

$$N_p = A_a \cdot f_{vd}$$

Resistenza di calcolo della lamiera grecata tesa.

b=1000mm

Riferito al metro di lunghezza.

Di solito $N_p < N_{c,f}' = 0.85 \cdot f_{cd} \cdot b \cdot h_c$ quindi l'asse neutro plastico taglia la soletta e pertanto la resistenza è governata dalla trazione sull'acciaio.

La posizione dell'asse neutro plastico per l'equilibrio alla traslazione è:

$$x_{pl} = \frac{N_p}{N_{cf}}$$

Asse neutro plastico.

$$M_{pl,Rd} = N_p \cdot \left(d_p - \frac{x_{pl}}{2}\right) > M_{Sd}$$

Momento resistente di calcolo.

Verifica allo SLU a taglio della soletta:

Fase II.

La resistenza a taglio è affidata alla soletta in calcestruzzo che non dispone di una armatura trasversale per il taglio.

La verifica deve essere condotta in accordo al paragrafo 4.1.2.3.5.1 delle NTC2018 per gli elementi senza armatura trasversale resistente al taglio.

La verifica può essere condotta, <u>in prima approssimazione</u>, usando la formula 4.3.2.3 dell'EUROCODICE 2 – 1993 semplificata come di seguito per non tenere conto, a favore della sicurezza, del contributo della lamiera grecata di trazione estesa su tutta la sezione considerata:

$$V_{V,Rd} = b_w \cdot d_p \cdot \tau_{R,d} \cdot k_v \cdot (1.2 + 40 \cdot \rho_l) \cong \mathbf{b}_w \cdot \mathbf{d}_p \cdot \tau_{R,d} \cdot \mathbf{k}_v$$

$$\tau_{R,d} = 0.25 \cdot \frac{f_{ctk(5\%)}}{v_c}$$

$$k_{v} = 1.6 - d_{p}(m); \ \rho_{l} = \frac{A_{l}}{b_{w} \cdot d_{p}}$$

Generalmente la verifica è largamente soddisfatta di solito anche assumendo k_v=1.

Verifica allo stato limite di servizio:

Fase II.

È cautelativo e consigliabile assumere per il calcolo della freccia lo schema a semplice appoggio. La freccia si calcola considerando il solo carico permanente portato ed il carico variabile di servizio, la freccia di fase I dovuta al peso del calcestruzzo fresco, non viene inclusa nella verifica della soletta composta (pagina 12: Uso dei rompi-tratta).

Se il rapporto $\frac{L}{d_p}$ < 32 la verifica di deformazione è di solito soddisfatta se il solaio non è particolarmente snello.

$$f = \frac{5}{384} \cdot \frac{(G_2 + Q) \cdot L^4}{E \cdot I} \qquad : \qquad \text{Deformazione per carico distribuito e semplici appoggi all'estremità.}$$

Il momento di inerzia I è la media dei valori della sezione nello stato fessurato e non fessurato.

E=210000MPa : Modulo elastico dell'acciaio.

n=15 : Coefficiente di omogeneizzazione tra acciaio e calcestruzzo per lungo e breve termine.

$$x = \frac{n \cdot A_l}{l_n} \cdot \left(-1 + \sqrt{\frac{2 \cdot l_n \cdot d_p}{n \cdot A_l}}\right)$$
 Posizione dell'asse neutro (stato fessurato) in condizioni

SLS.

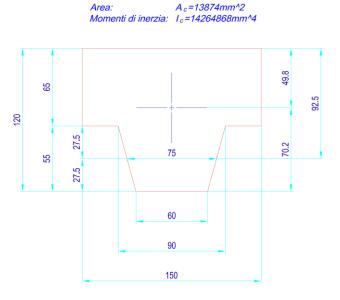
$$I_{p,a} = \frac{l_n \cdot x^3}{3 \cdot n} + \left[I_l + A_l \cdot \left(d_p - x \right)^2 \right] \qquad \text{Momento} \qquad \text{di inerzia della sezione parzializzata}$$

$$\underbrace{\text{omogeneizzata all'acciaio}}_{\text{omogeneizzata all'acciaio}} \text{ nello } \underbrace{\text{stato fessurato}}_{\text{stato fessurato}}.$$

 A_1 : Area della lamiera grecata riferita alla nervatura I_n =150mm come calcolata a pagina 14.

Il calcolo SLU e SLE può essere eseguito con il programma **VcaSlu** come mostrato di seguito.

Il valore di input del programma deve essere il momento flettente riferito alla singola greca:


$$M_{S,d,e} = \frac{(G_1 + G_2 + Q) \cdot L^2}{8} \cdot \frac{l_n}{h} \text{ essendo } l_n = 150 \text{mm la lunghezza del passo della nervatura.}$$

Il programma restituisce anche le caratteristiche geometriche della soletta omogeneizzati al calcestruzzo e che quindi devono essere divise per 15.

I_{ir,a} : Momento di inerzia della sezione di calcestruzzo interamente reagente omogeneizzata all'acciaio.

$$\begin{split} &I = \frac{I_{ir,a} + I_{p,a}}{2} \quad : \qquad \text{Media dei valori della} \\ &\text{sezione nello } \underline{\text{stato fessurato}} \text{ e } \underline{\text{non fessurato}}. \end{split}$$
 $&\text{II baricentro della sezione composta dalle} \\ &\text{figure elementari può essere calcolato con il} \\ &\text{software AUTOCAD mentre per il calcolo del} \\ &\text{baricentro della sezione complessiva si utilizza} \end{split}$

la teoria della geometria delle masse, pertanto il baricentro della sezione acciaio-calcestruzzo interamente reagente vale:

$$x_{G,ir} = \frac{A_l \cdot \gamma_s \cdot d_p + A_c \cdot \gamma_c \cdot x_c}{A_l \cdot \gamma_s + A_c \cdot \gamma_c} = \frac{187.3 \cdot 78.5 \cdot 92.5 + 13874 \cdot 23 \cdot 49.8}{187.3 \cdot 78.5 + 13874 \cdot 23} mm = 51.7 mm$$

$$I_{ir,a} = \frac{I_c + A_c \cdot (x_{G,ir} - x_c)^2}{n} + I_l + A_l \cdot (d_p - x_{G,ir})^2 =$$

$$= \left[\frac{14264868 + 13874 \cdot (51.7 - 49.8)^2}{15} + 95615.2 + 187.3 \cdot (92.5 - 51.7)^2 \right] \text{mm}^4 \cong$$

 $\cong (954330 + 95615 + 311787)$ mm⁴ = 1361732mm⁴

$$A_{ir,a} = \frac{A_c}{n} + A_l = \left(\frac{13874}{15} + 187.3\right) mm^2 \cong (925 + 187) mm^2 = 1112 mm^2$$

$$x = \frac{n \cdot A_l}{l_n} \cdot \left(-1 + \sqrt{\frac{2 \cdot l_n \cdot d_p}{n \cdot A_l}}\right) = \frac{15 \cdot 187.3}{150} \cdot \left(-1 + \sqrt{\frac{2 \cdot 150 \cdot 92.5}{15 \cdot 187.3}}\right) mm = 40 mm$$

$$I_{p,a} = \frac{l_n \cdot x^3}{3 \cdot n} + \left[I_l + A_l \cdot \left(d_p - x\right)^2\right] = \left[\frac{150 \cdot 40^3}{3 \cdot 15} + 95615 + 187 \cdot (92.5 - 40)^2\right] mm^4 = \frac{l_n \cdot x^3}{3 \cdot n} + \left[I_l + A_l \cdot \left(d_p - x\right)^2\right] + \frac{l_n \cdot x^3}{3 \cdot n} + \left[I_l + A_l \cdot \left(d_p - x\right)^2\right] + \frac{l_n \cdot x^3}{3 \cdot n} + \frac{l_n$$

 $=824367 \mathrm{mm}^4$ (82.4cm⁴ \cong 79.6cm⁴) – vedi pagina seguente.

$$I = \frac{I_{ir,a} + I_{p,a}}{2} \cdot \frac{b}{l_n} = \frac{1358393 + 824367}{2} \cdot \frac{1000}{150} \text{mm}^4 = 7275867 \text{mm}^4/\text{m}$$

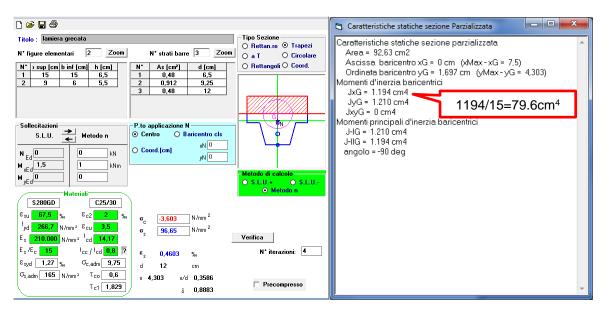
ARCA.LAB.	amministrazione@Bernardinielacovazzi.com tecnico@Bernardinielacovazzi.com www.Bernardinielacovazzi.com	Sede legale ed Uffici: Via La Venturina Terme – Campiglia Ma Tel.:+390565855314 - P. IVA: 018	rittima (Li) – ITALIA.
Titolo elaborato.	Codice fornitore.		
Titolo del documento	20-021-DR EP55-75 _00	Rev. 00	PAG. 21 di 31

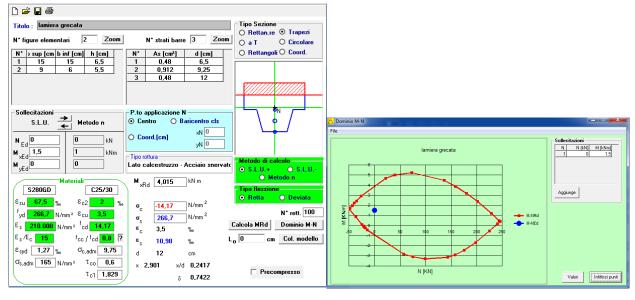
Allo SLU abbiamo:

$$N_{c,f} = 0.85 \cdot f_{cd} \cdot l_n \cdot x_{pl}$$

Resistenza di calcolo del calcestruzzo compresso.

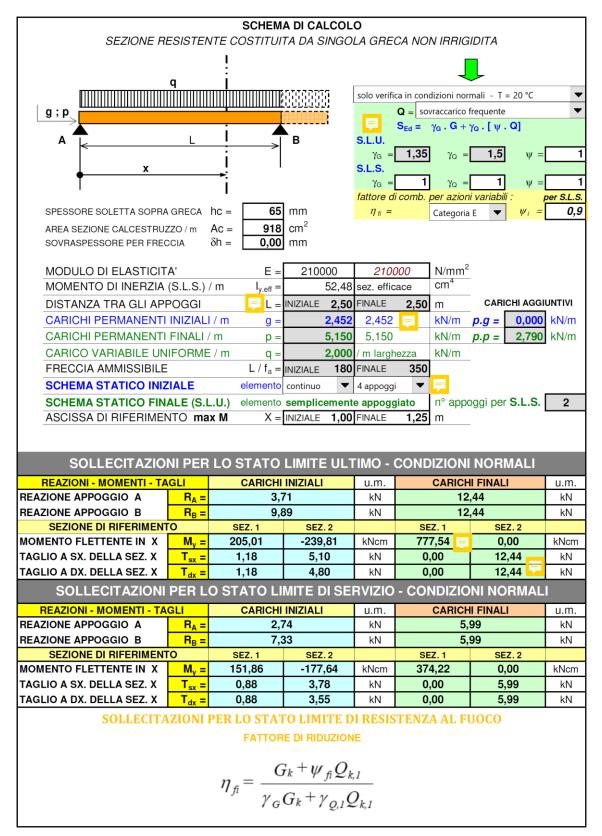
$$N_p = A_l \cdot f_{vd}$$


Resistenza di calcolo della lamiera grecata tesa.


La posizione dell'asse neutro plastico per l'equilibrio alla traslazione è:

$$x_{pl} = \frac{N_p}{N_{c,f}} = \frac{A_l \cdot f_{yd}}{0.85 \cdot f_{cd} \cdot l_n} = \frac{187.3 \cdot 266.67}{0.85 \cdot 16.67 \cdot 150} mm = 23.5 mm$$

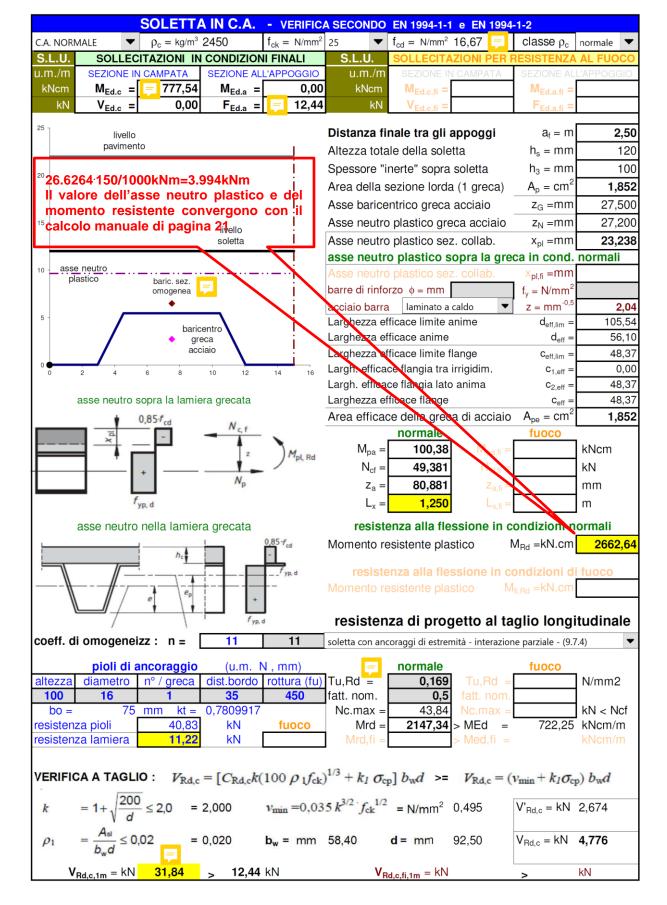
Pertanto il momento resistente vale:


$$M_{pl,Rd} = N_p \cdot \left(d_p - \frac{x_{pl}}{2}\right) = 187.3 \cdot 266.67 \cdot \left(92.5 - \frac{23.5}{2}\right) Nmm = 4.033 kNm$$

ARCA.LAB.	amministrazione@Bernardinielacovazzi.com tecnico@Bernardinielacovazzi.com www.Bernardinielacovazzi.com	Sede legale ed Uffici: Via Largo della Fiera n°21, Venturina Terme – Campiglia Marittima (Li) – ITALIA. Tel.:+390565855314 - P. IVA: 01869910495.		
Titolo elaborato.	Codice fornitore.		_	
Titolo del documento	20-021-DR EP55-75 _00	Rev. 00	PAG. 22 di 31	

9. Calcolo completo solaio collaborante in lamiera grecata.

Sede legale ed Uffici: Via Largo della Fiera n°21, Venturina Terme – Campiglia Marittima (Li) – ITALIA. Tel.:+390565855314 - P. IVA: 01869910495.


Titolo del documento

20-021-DR EP55-75 _00

Rev. 00 PAG. 23 di 31

LAMIERA GRECATA - VERIFICA SE	CONDO EN 1	1993-1-3 ; EN	1994-1-1 e	EN 1994-1-2	
TIPO EP55 TEST RESULT FILE GELFI OK!	APPOGGI SE	NZA ELEMENTI	DI IRRIGIDIMEI	NTO DELLE ANI	ME ▼
MATERIALE $f_{vb} = N/mm^2$ 280 $f_{va} = N/mm^2$	289,1	$f_{v\theta} = N/mm^2$	139	ε =	0,92
S280GD-EN10346 \blacktriangledown $\theta_{a,cr} = ^{\circ}C$ 722 $\theta_{c,t} = ^{\circ}C$		$\mathbf{C_c} = J/kgK$	900	$\lambda_c = W/mK$	1,95
NESSUN IRRIGIDIM. SUPERIORE ▼ NESSUN IRRIGIDIM. INFER		SEZ. NON PR	OTETTA -	N° 3 lati espo	osti 🔻
h ₃ (mm) sol. h _s (mm) TIPO DI PROTEZIONE TERMICA	SPESS. (mm)	ρ_p (kg/m ³)	h _{eff} (mm)	h _{eff,min} (mm)	REI
100 120		0	92,21 >		minuti 🔻
S.L.U. SOLLECITAZIONI IN CONDIZIONI INIZIALI	rapp. equiv.	PARAME		SISTENZA AI	FUOCO
u.m./m SEZIONE IN CAMPATA SEZIONE ALL'APPOGGIO	0	θ _{a,l} = °C	806	$k_{y,\theta,l} =$	0,107
kNcm M _{Ed.c} = 205,01 M _{Ed.a} = -239,81	-	$\theta_{a,w} = {}^{\circ}C$	658	$\mathbf{k}_{\mathbf{y},\theta,\mathbf{w}}$ =	0,331
kN V _{Ed.c} = 1,18 F _{Ed.a} = 9,89		$\theta_{a,u} = {}^{\circ}C$	557	$\mathbf{k}_{y,\theta,u}$ =	0,602
	Dietonzo in	vizialo tra al	i annoggi	a ml	2.50
6		niziale tra gl ale del prof		a _i = m h = mm	2,50 55
5 -		ale dei proi 1 flangia si		$b_f = mm$	60
4 3		1 flangia in	-	$b_i = mm$	60
baricentro	-	i ilaligia ili di progetto		$b_i = mm$	0,8
\		cordo anim		r = mm	0,80
0 2 4 6 8 10 12 14 16		piega irrigio	_	r _s = mm	-,
0 2 4 6 8 10 12 14 16	Interasse g			i _a = mm	150
< b →	-	ie anime (45	5°<φ<135°)	φ = deg	73,75
		enti flangia s		n _s =	,
+	N° irrigidim	enti flangia i	nferiore	n _i =	
1 1 1 1	N° irrigidim	enti ciascuna	a anima	$n_w =$	
\frown		idim. superio		$b_{p,1} = mm$	
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$		idim. inferior		$b_{p,1} = mm$	
$h_s \stackrel{\psi}{\longleftarrow} \phi$		idim. anima		h _a = mm	
	_	jidim. anima	_	$h_b = mm$	
		rrigidimento		b _{rf} = mm	
	_	rrigidimento		$b_{ri} = mm$	
		jidimento an		$h_s = mm$	
b _e		iid. superiore		$u_{tf} = mm$	
	_	iid. superiore iid. inferiore			
⁰ r → ← b _p →>		e irrigidiment		$u_{ti} = mm$ $\alpha_{sf} = deg$	
l		_	-		
×		e irrigidiment		$\alpha_{si} = \deg$	
		irrigidiment		$\alpha_s = \deg$	0.000
3. // 1		igidimento s		$b_{sf} = mm$	0,000
X is intersection of midlines P is midpoint of corner		igidimento ii		$b_{si} = mm$	0,000
$\phi/2$ $r_m = r + t/2$ $g_r = r_m[\tan(\phi/2) - \sin(\phi/2)]$		igidimento a		$S_s = mm$	0,000
		sezione lorda	, ,	$A = cm^2$	1,852
$g_r = 0.1800648$ $g_{rs} = 0 mm$		sse baricent		Z _G =mm	27,500
$\delta = 0.0070229$ $g_{ri} = 0 \text{ mm}$		neutro plas		$z_N = mm$	27,200
,	Momento d			I =cm ⁴	9,039
Caratteristiche calcolate con rif. a elementi piani :		sterno flangi	•	W _{el,c} =cm ³	3,287
$A_{g.sh} = 1,850$ $A_g = A_{g.sh} \cdot (1-\delta) = cm^2$ 1,838		sterno flangi		W _{el,t} =cm ³	3,287
$I_{g.sh} = 9,17$ $I_g = I_{g.sh} .(1-2\delta) = cm^4 9,04$		esistenza pla		$W_{pl} = cm^3$	3,764
deti neu temaneusi un di una unti		esposizione		t = min	40
	tandard per fu		•	+ 345 . \log_{10}	
temperatura di progetto del gas : $\theta_g = {}^{\circ}C$ increm. di temperatura per $\Delta t = 5$ sec soletta :	$\Delta\theta_{a,t} = {}^{\circ}C$			$h_{net} = W/m^2$ $\Delta\theta_{q,t} = {}^{\circ}C$	
"Horoni, ar tomporatura per 21 = 0300 Soletta .	$\Delta v_{a,t} = 0$	0,00	yas.	$\Delta v_{g,t} = 0$	0,00

Sede legale ed Uffici: Via Largo della Fiera n°21, Venturina Terme – Campiglia Marittima (Li) – ITALIA. Tel.:+390565855314 - P. IVA: 01869910495.

Titolo elaborato.

Codice fornitore.

Titolo del documento

20-021-DR EP55-75 _00

Rev. 00

PAG. 25 di 31

	CALCOLO DEL MODULO DI RESISTENZA EFFICACE IN CAMPATA						
5.5.3.4.2	1) calcolo dell'area efficac	e (A _{c.eff}) della	a flangia comp	oressa:			
	$\overline{\lambda}_{d} = (f_{yb} / \sigma_{cr.s})^{0.5}$	$\overline{\lambda}_d =$	0		tensione critica irrigid.	$\sigma_{cr.s} =$	0,00
	$\overline{\lambda}_{p,red} = \overline{\lambda}_{p} \cdot (\chi_{d}''')^{0,5}$	$\overline{\lambda}_{p,red} =$	0		spostamento verticale	$\delta = mm$	0,000
	fattore di rid. flangia	$\rho_{c} =$	0,5882382		rigidezza molla per u.l.	$k = 1 / \delta =$	0,000
	Area efficace iniz. irrigid.	A _{s,1} =	0	cm ²	fattore di riduz. res. irrig.	χ _d ' =	1,000
	Area efficace flangia	A _{c.eff} =	0,3933022	cm ²	" " (III° step)		1,000
	- Trod emodes hangia	, c.en —	0,0000022	•	(III Stop)	χα —	1,000
	2) caratteristiche geometri	iche della sez	rione ridotta:		lunghezza di instab.	$I_b = mm$	0,000
	Area sez. ridotta	$A_r' =$	1,644	cm ²	parametro di instab.	K w =	1,000
	Posizione baricentro	Z _G ' =	24,308	mm	– sviluppo flangia irrig.	b _e = mm	59,200
	Momento di inerzia	I _r ' =	7,461	cm ⁴	Modulo di res. irrigidim.	$W_{y.s} = cm^3$	0,00
	Modulo di res. superiore	W _{y,c} =	2,431	cm ³	tens. di compr. irrigid.	$\sigma_{\text{com.Ed}} =$	0,00
	Modulo di res. inferiore	W _{v,t} =	3,069	cm ³	Area efficace irrigidim.	$A_{s.1.red} = cm^2$	0,0000
	Modulo di res. illienore	vv _{y,t} =	3,009	OIII	Area emcace imgidim.	As.1.red = CIII	0,0000
	3) tensione nella flangia co	ompressa :			dist. bar. flangia compr.	e'c = mm	30,292
		$\sigma_{\text{com.Ed}} =$	126,50687	N/mm ²	largh, efficace iniziale	s _{eff,0} = mm	24,174724
	-				_		
5.5.3.4.3	,	efficace delle			4 bis) controllo larghezze		
	parte superiore	S _{eff,1} =	24,175	mm	_)		mm
ziali 1	parte lato sup. l° irrigid.	S _{eff,2} =	0,000	mm	_ Seff,2 =	0,000	mm
valori iniziali step 1	parte lato inf. Io irrigid.	S _{eff,3} =	0,000	mm	Seff.1 = Seff.2 = Seff.3 = Seff.4 = Seff.5 =	0.000	mm
alori	parte lato sup. II° irrigid.	S _{eff,4} =	0,000	mm	$- \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} \right) = \frac{S_{\text{eff},4}}{2} = S_$	0.000	mm
>	parte lato inf. II° irrigid.	S _{eff,5} =	0,000	mm	arghe sett's =		mm
	parte lato asse neutro	S _{eff,n} =	36,262	mm	$_{-}$) $\stackrel{\underline{\omega}}{=}$ $\stackrel{S_{\text{eff,n}}}{=}$	18,932	mm
	5) calcolo dei moduli di res	sistenza effica	aci e del <u>fatt</u>	ore di config	<u>jurazione</u> per la resistenza	al fuoco :	
	A	A 11 A		cm ²	Lr. 1 a		00.000
	Area sez. ridotta	$A_r'' = A_{eff}$	1,644		dist. bar. flangia compr.	e" _c = mm	30,292
	Posizione baricentro	Z _G " =	24,308	mm	fatt. di riduz. irrig. anima	χ _d "' _I =	1,000
	Momento di inerzia	I _r " =	7,461	cm ⁴	Area effic. irrigid. anima	$A_{\text{sa.red}} = \text{cm}^2$	0,000
6.1.4.1	Modulo di res. superiore	$W_{\rm eff,c} =$	2,431	cm³	per la resistenza	$A/L_r = mm$	
	Modulo di res. inferiore	$W_{eff,t} =$	3,069	cm ³	al fuoco	Φ=	
6.1.4.2	Mod. resist. parz. plast.	$W_{pp,eff} =$		cm ³			
		VERIFIC	CA DI RESI	STENZA IN	N CAMPATA		
	Avec vecistores e teclie		di non 15 1	7 01/	A O b / com + A	= cm ²	0.000
	Area resistente a taglio		di pag.15-1	7. UK	$A_v = 2 \cdot h_w / sen \phi \cdot t$		0,903
	Limite di resistenza a t	_			$V_{w.Rd} = A_v .f_{bv} / \gamma_{Mo}$	= kN	13,05
$\phi_{w} =$	$=$ 73,748 $g_{rw} = mm$	0,180	$s_w = mm$	56,096	\/!: 47 O/	$f_{bv} = N/mm^2$	151,71
S	viluppo anima : s _d = mm	56,096	$s_p = mm$	56,276	vedipag. 17. OK	$\overline{\lambda}_w =$	0,8859
$V_{Ed} =$	0,177 kN < 50%	$V_{w.Rd}$		incremento	$\mathbf{R_i} = (1 - M_{f.Rd} / M_{pl.Rd}).(2.V_E)$	$_{\rm d} / V_{\rm w.Rd} - 1)^2 =$	0,00
	· _						-
	Rapporto tensioni $\psi = $	-0,789234	>= -3	γ _{Mo} =	1,05 γ _{M.fi} =	1,00	
	Rapp. Moduli efficaci	0,7919813	<1	$f_{yb} / \gamma_{Mo} =$			N/mm^2
		,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	yo man		
	W _{eff} = W _{el} → classe	3			snellezza dell'elemento	λ =	1,4403303
	W _{eff} < W _{el} → classe				snellezza elastica	$\lambda_{\rm el} =$	0,8583405
	-	4		$r = \lambda/\lambda_{el}$	grado di utilizzo a		
	classe della sezione	4		$I = \lambda/\lambda_{el}$	grado di dillizzo a	$l = 0 \cdot \mu_0 =$	0,204
LEMBO	normale M _{c.Rd} =	f_{yb} / γ_{Mo} .	Weff,c		$M_{Ed} / M_{c.Rd} =$	0,474	< 1
COMPR			$\gamma_{M.fi} + \alpha . A_c .$	z_c . $f_{c\theta}$ / $\gamma_{M.fi}$			< 1
						0.075	
LEMBO TESO	normale M _{t.Rd} =	f_{yb} / γ_{Mo} .	vv ett,t		$M_{Ed} / M_{t.Rd} =$	0,376	< 1
TEGO	(M _{Ed} / M _{Rd}) _{max} + R _i =	0,474	< 1		(M _{Ed.fi} / M _{V.Rd.fi}) =		< 1
	(Eu /Hu/inax · · · ·	0,414	_ ` '		(Ed.ii /V.Rd.fi) =	$\overline{}$	~ .

Sede legale ed Uffici: Via Largo della Fiera n°21, Venturina Terme – Campiglia Marittima (Li) – ITALIA. Tel.:+390565855314 - P. IVA: 01869910495.

Titolo elaborato.

Titolo del documento

Codice fornitore.

20-021-DR EP55-75 _00

Rev. 00

PAG. 26 di 31

	AREA EFFICA	CE DELLE PAF	RTI COMPE	RESSE II	N CAMPAT	A - EN	1993-1-3 &	EN 1993-1	-5
	Lunghezza del p	annello tra gli ar	poggi	a	a = mm	2500	II° step	III° step	IV° step
	Area efficace irri				$= cm^2$	0,000	0,000	0,000	0,000
	Area efficace con	n spessore ridot	to irrigidim.	A _{s,1,ric}	$_{\rm d} = {\rm cm}^3$	0,000	→ 0,000	▶ 0,000	0,000
	Area efficace irri	gidimento anime	superiore	A _{sa,1}	$= cm^2$	0,000			
	Mom. di Inerzia i	rrigidimento flar	ngia superio	ore I _{s,1}	= cm ⁴	0,000	0,000	0,000	0,000
	Mom. di Inerzia i	rrigidimento ani	me	I _{sa,}	= cm ⁴	0,000			
				b	o = mm	59,20	$L_{\rm e} / 50 =$	42,50	mm > bo/2
				S _v	_v = mm	56,46	effetto 'sh	ear lag' tras	curabile
	Fattore di riduzio	ne per la flangia				· ·		α ₀ =	1,2887608
	$A_{c,eff} = \rho_c$. $A_{c,eff,loc}$	$+ \Sigma b_{edge,eff} \cdot t =$		393 cm ²		$\rho_c =$	1,00000	$\kappa =$	0,0179517
	$A_{c,eff,loc} = A_{s,eff} + \Sigma$	$E \rho_{loc} \cdot b_{c,loc} \cdot t =$	0,	000 cm ²	A	$A_c = cm^2$	0,000	$\beta =$	<u>-1</u>
	$A_{s,eff} = n_s \cdot A_{s(i,w), \cdot}$	b _{s1,e}	$_{\rm ff} = \rho_{\rm s,1} \cdot b_{\rm p}$	o,1 = Q	0,00 mm	1	0,000 m	nm	0,000
	$b_{c,loc} = b_{s,1(2),eff}$	b _{s2,e}	$ff = \rho_{s,1} \cdot b_{r}$ $ff = \rho_{s,2} \cdot b_{r}$	_{0,2} = $\frac{\Phi}{s}$	0,00 mm	II° step	0,000 m	nm III° step	0,000
	$\rho_{loc} = \rho_{s,1(2)}$	b _{s,e}	$_{\rm ff} = \rho_{\rm s} \cdot h$	$O_p = \frac{-}{}$	34,82 mm	ı e	34,824 m	nm	34,824
						ALCOHOLD .	t delle		AND STATE OF THE S
	$\chi_{\rm d} =$ fatto	re di riduzione	per gli irri	gidimen	ti: flar ani	ngia mo	χ _{d,s} =		N° irrig. = 0
	flangia	$\rho_{c}' = 0.58823$	182 I v	(d' =	1	λ' _{p,1} =	χ _{d,sa} = 1,432661		N° irrig. = 0 0,5908164
	nangia	$\rho_{\rm c}$ = 0,58823		'd" =	1	$\lambda'_{p,2} =$	0	$\rho'_{s,1} = \rho'_{s,2} = 0$	1
one		$\rho_c''' = 0,58823$		d''' =	1	$\lambda''_{p,1} =$			0,5908164
razie	anime	ρ _c ' =		(d' =	1	$\lambda''_{p,2} =$	0	0.1	1
iite		$\chi_{d}' =$	0	d" =	1	λ'" _{p,1} =			0,5908164
passi di iterazione	$S_1;S_2 = mm$	0 0,000	ν ξέ οοο	d''' =	1	$\lambda'''_{p,2} =$	0	ρ''' _{s,2} =	1
	parti non irrigid		-		403303		1,4403303		1,4403303
e Š	$\overline{\lambda}_{d} = (f_{y} / \sigma_{cr,c})^{0.5}$	anii	T	<u> </u>	079415	77			
Z	parti irrigidite	flan		-d' =	0	$\overline{\lambda}_{d}$ " =	0	$\overline{\lambda}_{d}$ " =	C
	$\overline{\lambda}_{d} = (f_y / \sigma_{cr,s})^{0.5}$	ani		_d' =	0				
	interazione	flangia e ani	me λ	' =	0	$\overline{\lambda}_{d}$ " =	0	$\overline{\lambda}_{d}$ " =	(
			0		0 0			I° step	IIIº ster
	parti non irrigidit			/[12.(1	$-v^2$) . b^2] flar	ngia		134,969	
	$k_{\sigma,p,flangia} = 4$	$k_{\sigma,p,anim}$			ani			757,590	N/mm ² ₩
	parti irrigidite				$(L_s^3)^{0.5}$ flan	-	$\sigma_{cr,s} =$		0,000
					.s _i] ^{0,5} /A _w anii		$\sigma_{cr,sa} =$	0,000	N/mm ²
					$_{,sa}^{4}$] ^{0,25} inte		$\sigma_{cr,mod} =$	0,000	0,000
	per n° irrigid. >= 3	$\sigma_{\rm cr,s} = 1.8$. E / [I _{s,1} . t /	(b _o . b _e)] ^{0,5} + 3,6 . E	$= . t^{-} / b_0^{-}$	$\sigma_{cr,s} =$	0,000	0,000
	raggio di inerzia in	rigid, flangia	l î	i _e =	0.00 mr	n	(0.000 m	nm	(0,000
	raggio di inerzia iri	15	İ	a =	0,00 mr	n II° step	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	III° step	
	posiz. baricentro ir		ZG	,s =	0,00 mr	n	0,000 m	ım	0,000
		0 0	0	,5	70				
	Snervamento r			te tesa :	NC)			
	per $\psi = -1$			X =	0,000 mm	· —	\	 F	=
	modulo di resiste					_3	\ /		<u> </u>
	$M_{pp,Rd} =$	0,00 kNcm	W_{pp}	eff =	0,000 cm	I ···	\	↓ _	'
	Momento resistente plastico delle sole flange :								
	posizione asse n	eutro plastico de	elle sole fla	nge		$Z_{f,N} =$	27.5 1	nm	

Sede legale ed Uffici: Via Largo della Fiera n°21, Venturina Terme – Campiglia Marittima (Li) – ITALIA. Tel.:+390565855314 - P. IVA: 01869910495.

Titolo elaborato.

Codice fornitore.

Titolo del documento

20-021-DR EP55-75 _00

Rev. 00

PAG. 27 di 31

	<u>CALCOLO</u>	DEL MODUL	LO DI RESIS	TENZA EFF	ICACE ALL'APPOGGIO		
5.3.4.2	1) calcolo dell'area efficac	e (A _{c.eff}) della	a flangia comp	oressa:			
	$\overline{\lambda}_{d} = \left(f_{yb} / \sigma_{cr.s}\right)^{0.5}$	$\overline{\lambda}_d = $	0		tensione critica irrigid.	$\sigma_{cr.s} =$	0,0
	$\overline{\lambda}_{p,red} = \overline{\lambda}_{p} \cdot (\chi_{d}''')^{0,5}$	$\overline{\lambda}_{p,red} =$	0		spostamento verticale	$\delta = mm$	0,00
	fattore di rid. flangia	$\rho_c =$	0,5882382		rigidezza molla per u.l.	k = 1 / δ =	1,00
	Area efficace iniz. irrigid.	A _{s,1} =	0	cm ²	fattore di riduz. res. irrig.	χ _d ' =	1,00
	Area efficace flangia	A _{c.eff} =	0,3933022	cm ²	" " (III° step)	χ _d ''' =	1,00
	2) caratteristiche geometri	iche della sez	ione ridotta:		lunghezza di instab.	$I_b = mm$	0,00
	Area sez. ridotta	A,' =	1,644	cm ²	parametro di instab.	k _w =	1,00
	Posizione baricentro	Z _G ' =	30,692	mm	sviluppo flangia irrig.	b _e = mm	59,20
	Momento di inerzia	I _r ' =	7,461	cm ⁴	Modulo di res. irrigidim.	$W_{y.s} = cm^3$	0,0
	Modulo di res. superiore	$W_{y,t} =$	3,069	cm ³	tens. di compr. irrigid.	$\sigma_{\text{com.Ed}} =$	0,0
	Modulo di res. inferiore	W _{y,c} =	2,431	cm ³	Area efficace irrigidim.	$\frac{A_{s.1.red} = cm^2}{A_{s.1.red}}$	
	3) tensione nella flangia co	ompressa :			dist. bar. flangia compr.	e'c = mm	30,29
	,	$\sigma_{\text{com.Ed}} = $	147,98063		largh. efficace iniziale	s _{eff,0} = mm	22,35198
5.3.4.3	4) calcolo della larghezza	efficace dolla	anime :		4 bis) controllo larghezze	efficaci :	
ر4.3.4.3	parte inferiore	s _{eff,1} =	22,352	mm			mm
≅	parte lato inf. II° irrigid.	S _{eff,1} =	0,000	mm	achina series se	0,000	mm
- IZIG	parte lato sup. II° irrigid.	S _{eff,3} =	0,000	mm		0,000	mm
valori iniziali step 1	parte lato inf. I° irrigid.	S _{eff,4} =	0,000	mm	$\begin{array}{c} - \\ \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \begin{array}{c}$	0,000	mm
valo s	parte lato sup. I° irrigid.	S _{eff,5} =	0,000	mm	= ghe sett's = sett's =	0,000	mm
	parte lato asse neutro	S _{eff,n} =	33,528	mm	$\frac{1}{2}$ $\frac{1}$	18,932	mm
	5) calcolo dei moduli di res	sistenza effica	aci		,		
	Area sez. ridotta	$A_r'' = A_{eff}$	1,617	cm ²	dist. bar. flangia compr.	e"c = mm	30,29
	Posizione baricentro	Z _G " =	31,189	mm	fatt. di riduz. irrig. anima	χ _d ''' _I =	1,00
	Momento di inerzia	I _r " =	7,215	cm ⁴	Area effic. irrigid. anima	$A_{\text{sa.red}} = \text{cm}^2$	0,00
.4.1	Modulo di res. superiore	W _{eff,t} =	3,030	cm ³		1	
	Modulo di res. inferiore	W _{eff,c} =	2,313	cm ³			
1.4.2	Mod. resist. parz. plast.	$W_{pp,eff} =$		cm ³			
		VERIFICA	A DI RESIST	TENZA AL	L'APPOGGIO		
	Area resistente a taglio	:			$A_v = 2 \cdot h_w / sen \phi \cdot t$	$= cm^2$	0,90
	Limite di resistenza a t	taglio :			$V_{w.Rd} = A_v . f_{bv} / \gamma_{Mo}$	= kN	13,0
$\phi_w =$		0,180	$s_w = mm$	56,096		$f_{bv} = N/mm^2$	151,7
	viluppo anima : s _d = mm	56,096	$s_p = mm$	56,276		$\overline{\lambda}_{w} =$	0,88
V _{Ed} =					$\mathbf{R_{i}} = (1 - M_{f.Rd} / M_{pl.Rd}).(2.V_{Ed})$		0,0
F _{Ed} =	1,484 kN l _{bs} =	50	mm -	resistenza	delle anime all'appoggio	$\mathbf{R}_{\text{w.Rd}} = \text{KN}$	6,2
	Rapporto tensioni $\psi = $	-0,789234	>= -3	$f_{yb} / \gamma_{Mo} =$	$= \frac{266,67}{f_{y\theta}/\gamma_{M.fi}} =$	138,83	N/mm^2
	Rapp. Moduli efficaci	0,7634612	<1				
	$W_{eff} = W_{el} \longrightarrow classe$	3			snellezza dell'elemento	$\lambda =$	1,440330
	$W_{eff} < W_{el} \longrightarrow classe$	4			snellezza elastica	$\lambda_{el} =$	0,858340
	classe della sezione	4			$r = \lambda/\lambda_{el}$		
ЕМВО	normale M _{c.Rd} =	f_{yb} / γ_{Mo} .	Weff,c		$M_{Ed} / M_{c,Rd} =$	0,583	< 1
OMPR	normale M -	f. / w	Woff t		NA / NA	0.445	. 1
	normale M _{t.Rd} =	f_{yb} / γ_{Mo} .	Weff,t		$\mathbf{M}_{Ed} / \mathbf{M}_{t.Rd} = $	0,445	< 1

Sede legale ed Uffici: Via Largo della Fiera n°21, Venturina Terme – Campiglia Marittima (Li) – ITALIA. Tel.:+390565855314 - P. IVA: 01869910495.

Titolo elaborato.

Titolo del documento

Codice fornitore.

20-021-DR EP55-75 _00

Rev. 00

PAG. 28 di 31

	AREA EFFICA	CE DEL	_LE PARTI C	OMPRES	SE ALL'A	APPOGO	GIO - EN	l 1993-1-3	& EN 1993-	1-5
	Lunghezza del p	oannello	o tra gli appo	aai	a =	mm	2500	II° step	IIIº step	
	Area efficace irr				A _{s,1} =		0,000	0,000	0,000	
	Area efficace co				$A_{s,1,rid} =$		0,000	→ 0,000		
	Area efficace irr				$A_{sa,1} =$		0,000		,	
	Mom. di Inerzia				I _{s,1} =		0,000	0,000	0,000	
	Mom. di Inerzia				I _{sa,1} =		0,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	
					b _o =		59,20	L _e / 50 =	25,00	mm < bo/2
					S _w =		56,46		shear lag' cons	I
	Fattore di riduzi	one per	· la flangia co	mpressa			, ,			1,2887608
	$A_{c,eff} = \rho_c. A_{c,eff,lo}$				3 cm²		$\rho_c =$	1,00000		0,0305179
	$A_{c,eff,loc} = A_{s,eff} +$					Α	$a_c = cm^2$	0,000		0,9041961
	$A_{s,eff} = n_s \cdot A_{s(i,w)}$					0,00 mm		0,000	mm	(0,000
	$b_{c,loc} = b_{s,1(2),eff}$,.	$b_{s1,eff} =$ $b_{s2,eff} =$	$\rho_{s,2}$. $b_{p,2}$	step	0,00 mm				0,000
	$\rho_{loc} = \rho_{s,1(2)}$		b _{s eff} =	ρ_s . b_p	= 3	4,82 mm		34,824		34,824
	7 6,1(2)		5,511	ТО Р		,		,		,
	$\chi_d = fatter$	ore di r	iduzione pe	r gli irrigi	dimenti :	flan	gia	χ _{d,s} =	1,00000	N° irrig. = 0
						anir		$\chi_{d,sa}$ =	1,00000	N° irrig. = 0
	flangia	$\rho_c' =$		χď		1	$\lambda'_{p,1} =$	1,432661	$\rho'_{s,1} =$	0,5908164
Φ		ρ_c " =		χа"		1	$\lambda'_{p,2} =$	0	1 0,2	1
zion		ρς''' =		♦ χ _d '"		1	$\lambda''_{p,1} =$	1,432661		0,5908164
era	anime	$\rho_c' =$		one χ _q '		1	$\lambda''_{p,2} =$		♦ ρ" _{s,2} =	1
9	S ₁ ;S ₂ ;S _{c,lor.}	χ _d ' =	1		=	1		1,432661		0,5908164
passi di iterazione		0,00000	56,456001	χd		1	λ <u>'"</u> _{p,2} =	0	, 0,2	1
ص ص	parti non irrigio		flangia	$\overline{\lambda}_{d}'$,		λ_d " =	1,4403303	$\overline{\lambda}_{d}$ " =	1,4403303
°	$\overline{\lambda}_{d} = (f_{y} / \sigma_{cr,c})^{0.5}$		anime		= 0,6079					
	parti irrigidite		flangia			0	$\overline{\lambda}_d$ " =	0	$\overline{\lambda}_d$ ''' =	0
	$\overline{\lambda}_{d} = (f_{y} / \sigma_{cr,s})^{0.5}$		anime		=	0	-		-	
	interazione	fla	angia e anime	$\overline{\lambda}_{d}'$	=	0	$\overline{\lambda}_{d}$ " =	0	$\overline{\lambda}_{d}$ ''' = I° step	III° step
									ı" steb	
	narti non irrigidi	to	σ - k	$\pi^2 \vdash t^2/\Gamma$	$(12 (1-v^2))$	h ² l flan	aia	σ -		1.1
	parti non irrigidi	te						$\sigma_{cr,c} =$	134,969	N/mm ²
	$k_{\sigma,p,flangia} = 4$	te	$k_{\sigma,p,anima} =$	18,86	6	anir	ne	$\sigma_{cr,ca} =$	134,969 757,590	N/mm ² ▼
		te	$k_{\sigma,p,anima} = $ $\sigma_{cr,s} = 4.2 . k_v$	18,86 _w . E / A _{s,1} . [6 I _{s,1} . t ³ / L _s	anir 3] ^{0,5} flanç	ne gia	$\sigma_{cr,ca} = $ $\sigma_{cr,s} = $	134,969 757,590 0,000	N/mm ² ▼ 0,000
	$k_{\sigma,p,flangia} = 4$	te	$k_{\sigma,p,anima} = $ $\sigma_{cr,s} = 4,2 . k_v$ $\sigma_{cr,sa} = 1,05 .$	18,86 _w . E / A _{s,1} . [k _f .E / A _{sa} .[I	6 I _{s,1} . t ³ / L _s _{w,1} . t ³ .s _i] ⁰	anir ³] ^{0,5} flanç ^{,5} /A _w anin	ne gia ne	$\sigma_{cr,ca} = $ $\sigma_{cr,s} = $ $\sigma_{cr,sa} = $	134,969 757,590 0,000 0,000	N/mm ² ▼ 0,000 N/mm ²
	$k_{\sigma,p,flangia} = 4$ parti irrigidite		$k_{\sigma,p,anima} = \\ \sigma_{cr,s} = 4,2 . k_v \\ \sigma_{cr,sa} = 1,05 . \\ \sigma_{cr,mod} = \sigma_{cr,s} . \\$	18,86 _W . E / A _{s,1} . [k _f .E / A _{sa} .[I / [1+(β _s . σ	6 $I_{s,1} \cdot t^3 / L_s$ $I_{w,1} \cdot t^3 \cdot s_i^{-1}$ $I_{cr,s} / \sigma_{cr,sa}$	anir anir 3] 0,5 flang $^{.5}/A_w$ anin 4] 0,25 inter	me gia ne razione	$\sigma_{cr,ca} = \ \sigma_{cr,s} = \ \sigma_{cr,sa} = \ \sigma_{cr,mod} = \ \sigma_{cr,mo$	134,969 757,590 0,000 0,000 0,000	N/mm ² N/mm ² 0,000 N/mm ² 0,000
	$k_{\sigma,p,flangia} = 4$		$k_{\sigma,p,anima} = $ $\sigma_{cr,s} = 4,2 . k_v$ $\sigma_{cr,sa} = 1,05 .$	18,86 _W . E / A _{s,1} . [k _f .E / A _{sa} .[I / [1+(β _s . σ	6 $I_{s,1} \cdot t^3 / L_s$ $I_{w,1} \cdot t^3 \cdot s_i^{-1}$ $I_{cr,s} / \sigma_{cr,sa}$	anir anir 3] 0,5 flang $^{.5}/A_w$ anin 4] 0,25 inter	me gia ne razione	$\sigma_{cr,ca} = $ $\sigma_{cr,s} = $ $\sigma_{cr,sa} = $	134,969 757,590 0,000 0,000	N/mm ² ▼ 0,000 N/mm ²
	$k_{\sigma,p,flangia} = 4$ parti irrigidite	3	$\begin{aligned} & K_{\sigma,p,anima} = \\ & \sigma_{cr,s} = 4,2 \cdot k_v \\ & \sigma_{cr,sa} = 1,05 \cdot l \\ & \sigma_{cr,mod} = \sigma_{cr,s} \\ & \sigma_{cr,s} = 1,8 \cdot E \end{aligned}$	18,86 $_{N}$. E / $A_{s,1}$. [k_{f} . E / A_{sa} . [l_{f} . E / l_{f} . l_{f}	6 $I_{s,1}$. t^3 / L_s $I_{w,1}$. $t^3 . s_i$ $I_{cr,s} / \sigma_{cr,sa}$ $I_{cr,s} / \sigma_{cr,sa}$ $I_{cr,s} / \sigma_{cr,sa}$	anir anir 3] ^{0,5} flang 5 /A _w anin 4] ^{0,25} inter 5 + 3,6 . E	me gia ne razione	$\sigma_{cr,ca} = $ $\sigma_{cr,s} = $ $\sigma_{cr,sa} = $ $\sigma_{cr,mod} = $ $\sigma_{cr,s} = $	134,969 757,590 0,000 0,000 0,000 0,000	N/mm ² N/mm ² 0,000 N/mm ² 0,000
	$k_{\sigma,p,flangia} = 4$ parti irrigidite per n° irrigid. >= 3	3 rrigid. fla	$\begin{aligned} & k_{\sigma,p,anima} = \\ & \sigma_{cr,s} = 4,2 \cdot k_{v} \\ & \sigma_{cr,sa} = 1,05 \cdot l \\ & \sigma_{cr,mod} = \sigma_{cr,s} \cdot r \\ & \sigma_{cr,s} = 1,8 \cdot E \end{aligned}$	18,86 $_{N}$. E / $A_{s,1}$. [k_{f} . E / A_{sa} . [l_{f} . E / l_{f} . l_{f}	6 $I_{s,1}$. t^3 / L_s $I_{w,1}$. $t^3 . s_i$ $I_{cr,s} / \sigma_{cr,sa}$ $I_{cr,s} / \sigma_{cr,sa}$ $I_{cr,s} / \sigma_{cr,sa}$	anir anir 3] ^{0,5} flang 5 /A _w anin 4] ^{0,25} inter 5 + 3,6 . E	me gia ne razione	$\sigma_{cr,ca} = $ $\sigma_{cr,s} = $ $\sigma_{cr,sa} = $ $\sigma_{cr,mod} = $ $\sigma_{cr,s} = $	134,969 757,590 0,000 0,000 0,000 0,000	N/mm ² ↓ N/mm ² ↓ 0,000 N/mm ² 0,000 0,000 0,000
	k _{σ,p,flangia} = 4 parti irrigidite per n° irrigid. >= 3 raggio di inerzia ir	3 rrigid. fla rrigid. ar	$\begin{aligned} & K_{\sigma,p,anima} = \\ & \sigma_{cr,s} = 4,2 \; . \; K_{v} \\ & \sigma_{cr,sa} = 1,05 \; . \\ & \sigma_{cr,mod} = \sigma_{cr,s} \; . \\ & \sigma_{cr,s} = 1,8 \; . \; E \end{aligned}$ angia	18,86 $_{N}$. E / $A_{s,1}$. [k_{f} . E / A_{sa} . [I / [$1+(\beta_{s}$. σ	$\begin{array}{l} 6 \\ \left(I_{s,1} \cdot t^3 / L_s \right) \\ \left(I_{s,1} \cdot t^3 / L_s \right) \\ \left(I_{s,1} \cdot t^3 \cdot s_1 \right) \\ \left(I_{cr,s} / \sigma_{cr,sa} \right)^4 \\ \left(I_{cr,s} / \sigma_{cr,sa} \right)^6 \\ \left(I_{s,1} \cdot t^3 / L_s \right) \\ \left(I_{s,1} \cdot $	anir anir 3] ^{0,5} flang 5 /A _w anin 4] ^{0,25} inter 5 + 3,6 . E	me gia ne razione	$\sigma_{cr,ca} = $ $\sigma_{cr,s} = $ $\sigma_{cr,sa} = $ $\sigma_{cr,mod} = $ $\sigma_{cr,s} = $	134,969 757,590 0,000 0,000 0,000 0,000 mm	N/mm ² ↓ N/mm ² ↓ 0,000 N/mm ² 0,000 0,000 0,000
	k _{σ,p,flangia} = 4 parti irrigidite per nº irrigid. >= 3 raggio di inerzia il raggio di inerzia il posiz. baricentro	3 rrigid. fla rrigid. ar irrigid. fla	$\begin{aligned} & k_{\sigma,p,anima} = \\ & \sigma_{cr,s} = 4,2 \cdot k_{s} \\ & \sigma_{cr,sa} = 1,05 \cdot l \\ & \sigma_{cr,mod} = \sigma_{cr,s} \cdot \\ & \sigma_{cr,s} = 1,8 \cdot E \end{aligned}$ angia	$\begin{array}{c} 18,86 \\ \text{w. E } / \text{ A}_{s,1}. \text{ [}\\ k_{\text{f.}} \text{ E } / \text{ A}_{sa}. \text{ [}\\ \text{i } / \text{ [} \text{ 1+(}\beta_{s}.\sigma_{sa}.\sigma_{$	$\begin{array}{l} 6 \\ \left[I_{s,1} : t^3 / L_s \right] \\ \left[v_{s,1} : t^3 . s_s \right]^0 \\ \left[v_{s,1} : t^3 . s_s \right]^0 \\ \left[v_{s,1} : \sigma_{cr,s} / \sigma_{cr,sa} \right]^0 \\ \left[v_{s,1} : \sigma_{cr,s} / \sigma_{cr,sa} \right]^0 \\ \left[v_{s,1} : \sigma_{cr,sa} / \sigma_{cr,sa} \right]^0 \\ \left[v_{s,1} : \sigma_{c$	anir 3] ^{0,5} flang 5 /A _w anin 4] ^{0,25} inter 5 + 3,6 . E 0,00 mm 0,00 mm	me gia ne razione it ² / b _o ²	$\sigma_{cr,ca} = $ $\sigma_{cr,s} = $ $\sigma_{cr,sa} = $ $\sigma_{cr,mod} = $ $\sigma_{cr,s} = $	134,969 757,590 0,000 0,000 0,000 0,000 mm	N/mm ²
	k _{σ,p,flangia} = 4 parti irrigidite per n° irrigid. >= 3 raggio di inerzia il raggio di inerzia il posiz. baricentro Snervamento	3 rrigid. fla rrigid. ar irrigid. fla raggiur	$\begin{aligned} & k_{\sigma,p,anima} = \\ & \sigma_{cr,s} = 4,2 \cdot k_{v} \\ & \sigma_{cr,sa} = 1,05 \cdot l \\ & \sigma_{cr,mod} = \sigma_{cr,s} \\ & \sigma_{cr,s} = 1,8 \cdot E \end{aligned}$ angia nime angia	$18,86$ $_{w} \cdot E / A_{s,1} \cdot [$ $k_{f} \cdot E / A_{sa} \cdot [I]$ $/ [1 + (\beta_{s} \cdot \sigma)]$ $/ [I_{s,1} \cdot t / (b)]$ i_{sa} $Z_{G,s}$ alla parte	$\begin{array}{l} 6 \\ I_{s,1} \cdot t^3 / L_s \\ I_{w,1} \cdot t^3 \cdot s_1 \end{array}$ $\begin{array}{l} I_{s,1} \cdot t^3 / L_s \\ I_{w,1} \cdot t^3 \cdot s_1 \end{array}$ $\begin{array}{l} I_{s,1} \cdot t^3 \cdot s_2 \\ I_{w,1} \cdot t^3 \cdot s_2 \end{array}$ $\begin{array}{l} I_{s,1} \cdot t^3 \cdot t_3 \\ I_{w,1} \cdot t^3 \cdot s_2 \end{array}$ $\begin{array}{l} I_{s,1} \cdot t^3 \cdot t_3 \\ I_{w,1} \cdot t_3 \cdot t_3 \end{array}$ $\begin{array}{l} I_{s,1} \cdot t^3 \cdot t_3 \cdot t_3 \\ I_{w,1} \cdot t_3 \cdot t_3 \cdot t_3 \end{array}$ $\begin{array}{l} I_{s,1} \cdot t^3 \cdot t_3	anir 3]0,5 flang 5/A _w anin 4]0,25 intel 6 + 3,6 . E 0,00 mm 0,00 mm	me gia ne razione s. t²/b₀² n n II° step	$\sigma_{cr,ca} = $ $\sigma_{cr,s} = $ $\sigma_{cr,sa} = $ $\sigma_{cr,mod} = $ $\sigma_{cr,s} = $	134,969 757,590 0,000 0,000 0,000 0,000 mm	N/mm ²
	$k_{\sigma,p,flangia} = 4$ parti irrigidite per nº irrigid. >= 3 raggio di inerzia irraggio di inerzia irposiz. baricentro Snervamento per $\psi = -1$	3 rrigid. fla rrigid. ar irrigid. fla raggiur b _c =	$\begin{aligned} & k_{\sigma,p,anima} = \\ & \sigma_{cr,s} = 4,2 \cdot k_{s} \\ & \sigma_{cr,sa} = 1,05 \cdot l \\ & \sigma_{cr,mod} = \sigma_{cr,s} \cdot \\ & \sigma_{cr,mod} = \sigma_{cr,s} \cdot l \\ & \sigma_{cr,s} = 1,8 \cdot E \end{aligned}$ angia anime angia	$18,86$ $_{w} \cdot E / A_{s,1} \cdot [$ $k_{f} \cdot E / A_{sa} \cdot [I]$ $/ [1 + (\beta_{s} \cdot \sigma_{sa})]$ $/ [I_{s,1} \cdot t / (b_{sa})]$ $Z_{G,s}$ $Z_{G,s}$ $d I a parte$ $mm x =$	$\begin{array}{l} 6 \\ {\rm I}_{\rm s,1} \cdot {\rm t}^3 / {\rm L_s} \\ {\rm w,1} \cdot {\rm t}^3 \cdot {\rm s} {\rm j}^0 \\ {\rm w,1} \cdot {\rm t}^3 \cdot {\rm s} {\rm j}^0 \\ {\rm cr,s} / \sigma_{\rm cr,sa})' \\ {\rm co}_{\rm o}^3 \cdot {\rm b_e}^2) {\rm j}^{0.5} \\ = \\ = \\ = \\ {\rm extens} \\ = \\ {\rm tessa} : \\ = \\ 0. \end{array}$	anir 3] ^{0,5} flang 5 /A _w anin 4] ^{0,25} inter 5 + 3,6 . E 0,00 mm 0,00 mm	me gia ne razione s. t²/b₀² n n II° step	$\sigma_{cr,ca} = $ $\sigma_{cr,s} = $ $\sigma_{cr,sa} = $ $\sigma_{cr,mod} = $ $\sigma_{cr,s} = $	134,969 757,590 0,000 0,000 0,000 0,000 mm	N/mm ²
	$k_{\sigma,p,flangia} = 4$ parti irrigidite per nº irrigid. >= 3 raggio di inerzia il raggio di inerzia il posiz. baricentro Snervamento per $\psi = -1$ modulo di resist	3 rrigid. fla rrigid. ar irrigid. fla raggiur $b_c =$ tenza ef	$k_{\sigma,p,anima} = $ $\sigma_{cr,s} = 4,2 \cdot k_{s}$ $\sigma_{cr,sa} = 1,05 \cdot k_{s}$ $\sigma_{cr,mod} = \sigma_{cr,s} \cdot k_{s}$ $\sigma_{cr,s} = 1,8 \cdot E$	$18,86$ $_{w} \cdot E / A_{s,1} \cdot [$ $k_{f} \cdot E / A_{sa} \cdot [I]$ $/ [1 + (\beta_{s} \cdot \sigma_{sa})]$ $/ [I_{s,1} \cdot t / (b_{sa})]$ $Z_{G,s}$ $2 \cdot [I_{sa}]$ $Z_{G,s}$ $2 \cdot [I_{sa}]$ $Z_{G,s}$ $2 \cdot [I_{sa}]$ $Z_{G,s}$	$\begin{array}{l} 6 \\ (I_{s,1} \cdot t^3 / L_s) \\ (I_{s,1} \cdot t^3 \cdot s) \\ (I_{s,1} \cdot t^3 \cdot t^3 \cdot s) \\ (I_{s,1} \cdot t^3 \cdot t^3 \cdot t) \\ (I_{s,1} \cdot t^3 \cdot t^3 \cdot t) \\ (I_{s,1} \cdot t^$	anir 3]0,5 flang 5,5/A _w anin 4]0,25 intel 6 + 3,6 . E 0,00 mm 0,00 mm 0,00 mm	me gia ne razione s. t²/b₀² n II° step	$\sigma_{cr,ca} = $ $\sigma_{cr,s} = $ $\sigma_{cr,sa} = $ $\sigma_{cr,mod} = $ $\sigma_{cr,s} = $	134,969 757,590 0,000 0,000 0,000 0,000 mm	N/mm ²
	$k_{\sigma,p,flangia} = 4$ parti irrigidite per nº irrigid. >= 3 raggio di inerzia irraggio di inerzia irposiz. baricentro Snervamento per $\psi = -1$	3 rrigid. fla rrigid. ar irrigid. fla raggiur $b_c =$ tenza ef	$\begin{aligned} & k_{\sigma,p,anima} = \\ & \sigma_{cr,s} = 4,2 \cdot k_{s} \\ & \sigma_{cr,sa} = 1,05 \cdot l \\ & \sigma_{cr,mod} = \sigma_{cr,s} \cdot \\ & \sigma_{cr,mod} = \sigma_{cr,s} \cdot l \\ & \sigma_{cr,s} = 1,8 \cdot E \end{aligned}$ angia anime angia	$18,86$ $_{w} \cdot E / A_{s,1} \cdot [$ $k_{f} \cdot E / A_{sa} \cdot [I]$ $/ [1 + (\beta_{s} \cdot \sigma_{sa})]$ $/ [I_{s,1} \cdot t / (b_{sa})]$ $Z_{G,s}$ $Z_{G,s}$ $d I a parte$ $mm x =$	$\begin{array}{l} 6 \\ (I_{s,1} \cdot t^3 / L_s) \\ (I_{s,1} \cdot t^3 \cdot s) \\ (I_{s,1} \cdot t^3 \cdot t^3 \cdot s) \\ (I_{s,1} \cdot t^3 \cdot t^3 \cdot t) \\ (I_{s,1} \cdot t^3 \cdot t^3 \cdot t) \\ (I_{s,1} \cdot t^$	anir 3]0,5 flang 5/A _w anin 4]0,25 intel 6 + 3,6 . E 0,00 mm 0,00 mm	me gia ne razione s. t²/b₀² n II° step	$\sigma_{cr,ca} = \\ \sigma_{cr,s} = \\ \sigma_{cr,sa} = \\ \sigma_{cr,mod} = \\ \sigma_{cr,s} = \\ \begin{cases} 0,000 \\ 0,000 \end{cases}$	134,969 757,590 0,000 0,000 0,000 mm III° step	N/mm ²
	$k_{\sigma,p,flangia} = 4$ parti irrigidite per nº irrigid. >= 3 raggio di inerzia il raggio di inerzia il posiz. baricentro Snervamento per $\psi = -1$ modulo di resist	3 rrigid. fla rrigid. ar irrigid. fla raggiur b _c = tenza ef 0,00	$k_{\sigma,p,anima} = $ $\sigma_{cr,s} = 4,2 \cdot k_s$ $\sigma_{cr,sa} = 1,05 \cdot k_s$ $\sigma_{cr,mod} = \sigma_{cr,s} \cdot \kappa_{cr,mod}$ $\sigma_{cr,s} = 1,8 \cdot E$ angia hime angia $\sigma_{cr,s} = 1,8 \cdot E$	$18,86$ $_{w} \cdot E / A_{s,1} \cdot [$ $k_{f} \cdot E / A_{sa} \cdot [I]$ $/ [1 + (\beta_{s} \cdot \sigma_{sa})]$ $/ [I_{s,1} \cdot t / (b_{sa})]$ $Z_{G,s}$ $2 \cdot G_{sa}$ $Alla parte$ $mm $	$\begin{array}{l} 6 \\ (1_{s,1} \cdot t^3 / L_s) \\ (1_{s,1} \cdot t^3 \cdot s) \\ (1_{s,1} \cdot t^3 \cdot t^3 \cdot s) \\ (1_{s,1} \cdot t^3 \cdot t^3 \cdot t) \\ (1_{s,1} \cdot t^3 \cdot t^3 \cdot t) \\ (1_{s,1} \cdot t^$	anir 3]0,5 flang 5/A _w anin 4]0,25 inter 6 + 3,6 . E 0,00 mm 0,00 mm 0,00 mm NO ,000 mm	me gia ne razione s. t²/b₀² n II° step	$\sigma_{cr,ca} = \\ \sigma_{cr,s} = \\ \sigma_{cr,sa} = \\ \sigma_{cr,mod} = \\ \sigma_{cr,s} = \\ \begin{cases} 0,000 \\ 0,000 \end{cases}$	134,969 757,590 0,000 0,000 0,000 mm III° step	N/mm ²
	$k_{\sigma,p,flangia} = 4$ parti irrigidite per nº irrigid. >= 3 raggio di inerzia il raggio di inerzia il posiz. baricentro Snervamento per $\psi = -1$ modulo di resist $M_{pp,Rd} =$ Resistenza locali	rrigid. fla rrigid. ar irrigid. fla raggiur b _c = tenza ef 0,00 cale de	$k_{\sigma,p,anima} = \sigma_{cr,s} = 4,2 \cdot k_s$ $\sigma_{cr,sa} = 1,05 \cdot k_s$ $\sigma_{cr,mod} = \sigma_{cr,s}$ $\sigma_{cr,s} = 1,8 \cdot E$ angia hime angia htto prima da $= 27,500$ fficace parzia $= 27,500$ fficace parzia $= 27,500$ fficace parzia	18,86 w. E / A _{s,1} . [k _f .E / A _{sa} . [/ [1+(β _s . σ / [I _{s,1} . t / (b i _s Z _{G,s} alla parte mm x = almente pla W _{pp,eff}	$\begin{array}{l} 6 \\ _{s,1} \cdot t^3 / L_s _{s,1} \cdot t^3 / L_s _{s,1} \\ _{w,1} \cdot t^3 \cdot s_1 _{s,1} \\ _{v,1} \cdot t^3 \cdot s_2 _{s,2} \\ _{v,1} \cdot t^3 \cdot s_3 _{s,2} \\ _{v,1} \cdot t^3 \cdot s_3 _{s,2} \\ _{v,2} \cdot s_3 \cdot s_4 _{s,2} \\ _{v,3} \cdot s_4 \cdot s_3 _{s,2} \\ _{v,4} \cdot s_5 \cdot s_4 \cdot s_4 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,4} \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 \cdot s_5 _{s,4} \\ _{v,$	anir 3]0,5 flang 5,5/A _w anin 4]0,25 inter 5 + 3,6 . E 0,00 mm 0,00 mm 0,00 mm NO 0,00 mm 0,00 mm	me gia ne razione c. t²/b₀² n n II° step n	$\sigma_{cr,ca} = \\ \sigma_{cr,s} = \\ \sigma_{cr,sa} = \\ \sigma_{cr,mod} = \\ \sigma_{cr,s} = \\ \begin{cases} 0,000 \\ 0,000 \end{cases}$	134,969 757,590 0,000 0,000 0,000 mm III° step	N/mm ²
	$k_{\sigma,p,flangia} = 4$ parti irrigidite per nº irrigid. >= 3 raggio di inerzia ir raggio di inerzia ir posiz. baricentro Snervamento per $\psi = -1$ modulo di resist $M_{pp,Rd} =$	rrigid. fla rrigid. ar irrigid. fla raggiur b _c = tenza ef 0,00 cale de	$k_{\sigma,p,anima} = \sigma_{cr,s} = 4,2 \cdot k_{s}$ $\sigma_{cr,sa} = 1,05 \cdot k_{s}$ $\sigma_{cr,mod} = \sigma_{cr,s} \cdot \kappa_{cr,s} = 1,8 \cdot E$ angia into prima da 27,500 angia e 27,500	$18,86$ $_{w} \cdot E / A_{s,1} \cdot [$ $k_{f} \cdot E / A_{sa} \cdot [I + (\beta_{s} \cdot \sigma_{sa})] \cdot [I_{s,1} \cdot I / (b_{sa})] \cdot [I_{s,1} \cdot I / (b_{sa$	$\begin{array}{l} 6 \\ _{s,1} \cdot t^3 / L_s \\ _{w,1} \cdot t^3 \cdot s_1 ^0 \\ _{w,1} \cdot t^3 \cdot s_2 ^0 \\ _{cr,s} / \sigma_{cr,sa} / \sigma_{cr,$	anir 3]0,5 flang 5,5/A _w anin 4]0,25 inter 5 + 3,6 . E 0,00 mm 0,00 mm 0,00 mm NO 0,00 mm 0,00 mm	me gia ne razione $t \cdot t^2 / b_o^2$ n $t \cdot t^2 / b_o^2$ n $t \cdot t^2 / b_o^2$	$\sigma_{cr,ca} = \\ \sigma_{cr,s} = \\ \sigma_{cr,sa} = \\ \sigma_{cr,mod} = \\ \sigma_{cr,s} = \\ \begin{cases} 0,000 \\ 0,000 \end{cases}$	134,969 757,590 0,000 0,000 0,000 mm III° step	N/mm ²

Sede legale ed Uffici: Via Largo della Fiera n°21, Venturina Terme – Campiglia Marittima (Li) – ITALIA. Tel.:+390565855314 - P. IVA: 01869910495.

Titolo elaborato.

Titolo del documento

Codice fornitore.

20-021-DR EP55-75 _00

Rev. 00

PAG. 29 di 31

	CALCOLO DEL MOMENT	O DI INERZIA	A DELLA SEZIO	ONE EFFIC	CACE PER LO STATO LIM	IITE DI SERV	IZIO		
5.5.3.4.2	1) calcolo dell'area efficad	ce (A _{c.eff}) della	a flangia compi	ressa:					
	$\overline{\lambda}_{d} = (f_{yb} / \sigma_{cr.s})^{0.5}$	$\overline{\lambda}_d =$	0		tensione critica irrigid.	$\sigma_{cr.s} =$	0,00		
	$\overline{\lambda}_{p,red} = \overline{\lambda}_{p} \cdot (\chi_{d}''')^{0,5}$	$\overline{\lambda}_{p,red} =$	0		spostamento verticale	$\delta = mm$	0,00		
	fattore di rid. flangia	$\rho_c =$	1		rigidezza molla per u.l.	k = 1 / δ =	0,00		
	Area efficace iniz. irrigid.	A _{s,1} =	0	cm ²	fattore di riduz. res. irrig.	χ _d ' =	1,00		
	Area efficace flangia	A _{c.eff} =	0,2785896	cm ²	" " (III° step)	χ _d ''' =	1,00		
	2) caratteristiche geometriche della sezione ridotta: lunghezza di instab.						0,000		
	Area sez. ridotta	$A_r' =$	1,644	cm ²	parametro di instab.	k _w =	1,000		
	Posizione baricentro	Z _G ' =	24,308	mm	– sviluppo flangia irrig.	b _e = mm	59,200		
	Momento di inerzia	l _r ' =	7,461	cm ⁴	Modulo di res. irrigidim.	$W_{y.s} = cm^3$	0,00		
	Modulo di res. superiore	W _{y,c} =	2,431	cm ³	tens. di compr. irrigid.	$\sigma_{\text{com.Ed}} =$	0,00		
	Modulo di res. inferiore	$W_{y,t} =$	3,069	cm ³	Area efficace irrigidim.	$A_{s.1.red} = cm^2$	0,0000		
	3) tensione nella flangia d	compressa per	r S.L.S. :		dist. bar. flangia compr.	e' _c = mm	30,292		
	,	σ _{com.Ed.ser}	93,709	N/mm²	largh. efficace iniziale	s _{eff,0} = mm			
5.5.3.4.3	4) calcolo della larghezza	efficace delle	anime (s _{eff.w}).	:	4 bis) controllo larghezze	efficaci :			
	parte superiore	S _{eff,1} =	28,088	mm		12,621	mm		
ali	parte lato sup. I° irrigid.	S _{eff,2} =	0,000	mm	- Lica Seff,2 =	0,000	mm		
valori iniziali step 1	parte lato inf. Io irrigid.	S _{eff,3} =	0,000	mm	S _{eff,3} =	0,000	mm		
lori	parte lato sup. II° irrigid.	S _{eff,4} =	0,000	mm	$S_{\text{eff,4}} = $	0,000	mm		
va	parte lato inf. II° irrigid.	S _{eff,5} =	0,000	mm	Seff.1 = Seff.2 = Seff.3 = Seff.4 = Seff.5 =	0,000	mm		
	parte lato asse neutro	S _{eff,n} =	42,133	mm	$_{-}$) $\underline{\underline{e}}$ \underline{c} $\underline{s}_{eff,n} =$	18,932	mm		
	5) calcolo dei moduli di resistenza efficaci								
	Area sez. ridotta	A_r " = A_{eff}	1,644	cm ²	dist. bar. flangia compr.	e" _c = mm	30,292		
	Posizione baricentro	Z _G " =	24,308	mm	fatt. di riduz. irrig. anima	χ_d "' =	1,000		
	Momento di inerzia eff.	$I_r"=I_{\sigma(eff)}=$	7,461	cm ⁴	Area effic. irrigid. anima	$A_{\text{sa.red}} = \text{cm}^2$	0,000		
6.1.4.1	Modulo di res. superiore	$W_{\rm eff,c}$ =	2,431	cm ³	_				
	Modulo di res. inferiore	$W_{eff,t} =$	3,069	cm ³	_				
6.1.4.2	Mod. resist. parz. plast.	$W_{pp,eff} =$	0,000	cm ³	_				
	6) interpolazione tra sezio	one efficace e	sezione lorda						
7.1 (3)	$I_{\rm fic} = I_{\rm gr} - \frac{\sigma_{\rm gr}}{\sigma}$	$(I_{\rm gr}-I(\sigma)_{\rm ef}$	r) Vedi p	ag. 20: ($\left(\frac{727.5867 \text{cm}^4}{\text{n=15}} \cdot \frac{150}{1000}\right) \text{cm}$	$a^4 = 7.2766$	cm ⁴		
	$I_{gr} = 9,039$		momento di in			, in coloo)			
	$I_{\sigma \text{ (eff)}} = 7,461$				sezione efficace (vedi nota	,			
	9.				e max della sezione lorda po e max della sezione efficace				
	0 = 95,71	_	terisione di co	mpressione		per 10 3.L.3.			
	I _{fic} = 7,872	cm ⁴	I _{bu} =	172,57	$I_{bc} =$	88,97	cm ⁴		
		VE	RIFICA DI D	EFORM/	AZIONE				
	Freccia iniziale	f _{max,i} =	5,983 r	nm – I /	418 < L /	180 = mr	n 13,89		
1	Freccia finale		1,463 r			050			
		f _{max,f} =					n 7,14		
1	Distanza da "A"	X _{A iniziale} =	1,115 r	H	freccia iniz. < 1/10.h				
	Distance of UAN	1	4.056						
	Distanza da "A"	X _{A finale} =	1,250 r	n	elemento sempliceme		iato		

ARCA.LAB.	amministrazione@Bernardinielacovazzi.com tecnico@Bernardinielacovazzi.com www.Bernardinielacovazzi.com	Sede legale ed Uffici: Via Largo della Fiera n°21, Venturina Terme – Campiglia Marittima (Li) – ITALIA. Tel.:+390565855314 - P. IVA: 01869910495.		
Titolo elaborato.	Codice fornitore.			
Titolo del documento	20-021-DR EP55-75 _00	Rev. 00	PAG. 30 di 31	

10. Regole pratiche di progettazione e realizzazione.

- a) Per la ripartizione dei carichi l'armatura longitudinale in accordo a NTC2018 deve essere la minima come descritto al paragrafo 6.
 - La stessa prescrizione è prevista nell'EUROCODICE 4 quando agli appoggi non si predispone un'armatura specifica per i momenti negativi.
 - L'armatura in zona tesa deve essere sempre comunque verificata.
- b) Per evitare accumuli a momento positivo, è consigliabile eseguire il getto con una pompa iniziando dagli appoggi verso il centro della campata.
- c) Il calcestruzzo di consistenza fluido-plastica è quello più idoneo per l'esecuzione del solaio con lamiera collaborante.
- d) Le aperture fino a 250/300mm non richiedono particolari accorgimenti.
 - Per aperture superiori si deve compensare la lamiera asportata con una cerchiatura eseguita con tondo per cemento armato B450C.
 - Nella pratica si dispongono due ferri per lato: *Per avere un'indicazione di massima, per un'apertura di 600-700 millimetri si consiglia una cerchiatura con almeno 2x(2+2) barre di diametro 16mm per ogni lato dell'apertura.*
 - Dopo aver armato perimetralmente l'apertura si inserisce un cassero di polistirolo nella zona da asportare e, dopo la presa del getto, si asporta il polistirolo e si esegue il taglio della lamiera.
- e) Anche se la lamiera grecata è disposta su due o più campate si consiglia di calcolare la trave come appoggiata agli estremi se non si ha la certezza di poter disporre correttamente l'adeguata armatura nella zona a momento negativo.
 - La posa in opera dell'armatura, se addizionale, ovvero se non è sufficiente l'armatura di ripartizione, è comunque più onerosa: *Si evidenzia anche la difficoltà pratica di mantenerla in posizione durante la fase di getto, al valore corretto del copri-ferro, anche in presenza dei distanziali per armatura che si trovano in commercio.*

ARCA.LAB.	amministrazione@Bernardinielacovazzi.com tecnico@Bernardinielacovazzi.com www.Bernardinielacovazzi.com	Sede legale ed Uffici: Via Largo della Fiera n°21 Venturina Terme – Campiglia Marittima (Li) – ITALIA. Tel.:+390565855314 - P. IVA: 01869910495.		
Titolo elaborato.	Codice fornitore.			
Titolo del documento	20-021-DR EP55-75 _00	Rev. 00	PAG. 31 di 31	

11. Conclusioni

Le tabelle riportate sul sito Etrusca profilati s.r.l. sono valide per la selezione del profilo composto acciaio – calcestruzzo più idoneo in funzione del carico di servizio (utile).

Il progettista deve comunque svolgere autonomamente le verifiche allo stato limite ultimo e di servizio per le condizioni specifiche del progetto come previsto dalle NTC2018.

Si raccomanda il fissaggio delle lamiere in fase d'opera con viti autofilettanti o auto perforanti, rivetti o chiodi evitando punti di saldatura per non inficiare la zincatura delle lamiere.